【模板】欧拉定理
题目背景
模板题,无背景
题目描述
给你三个正整数,a,m,ba,m,ba,m,b,你需要求:
abmodma^b \mod mabmodm
输入输出格式
输入格式:一行三个整数,a,m,ba,m,ba,m,b
输出格式:一个整数表示答案
输入输出样例
说明
注意输入格式,a,m,ba,m,ba,m,b 依次代表的是底数、模数和次数
样例1解释:
24mod7=22^4 \mod 7 = 224mod7=2
输出2
数据范围:
对于全部数据:
1≤a≤1091≤a≤10^91≤a≤109
1≤b≤10200000001≤b≤10^{20000000}1≤b≤1020000000
1≤m≤1061≤m≤10^61≤m≤106

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 98765431;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
}
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }
/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int a, m, phi = 1;
int B, fg;
ll qpow(ll x, ll y) {
ll ans = 1;
while (y) {
if (y % 2)ans = ans * x%m;
x = x * x%m; y >>= 1;
}
return ans;
}
int main()
{
// ios::sync_with_stdio(0);
rdint(a); rdint(m);
a %= m; int tmp = m;
for (int i = 2; i <= sqrt(tmp); i++) {
if (tmp%i)continue;
phi *= (i - 1); tmp /= i;
while (tmp%i == 0) {
phi *= i; tmp /= i;
}
}
if (tmp > 1)phi *= (tmp - 1);
char ch;
while ((ch = getchar()) < '0' || ch > '9');
while (B = B * 10ll + (ch^'0'), (ch = getchar()) >= '0'&&ch <= '9') {
if (B >= phi)fg = 1, B %= phi;
}
if (B >= phi)fg = 1, B %= phi;
if (fg)B += phi;
printf("%lld\n", qpow(a * 1ll, B * 1ll));
return 0;
}