2159.max

博客提出将指定正整数n(3≤n≤10000)分解成m个(m>=1)互不相同自然数的和,使这些自然数乘积最大的问题。给出输入、输出要求及数据范围限制,还提及代码部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

一个正整数一般可以分为几个互不相同的自然数的和,如3=1+2,4=1+3,5=1+4=2+3,6=1+5=2+4,…。
现在你的任务是将指定的正整数n分解成m个(m>=1)互不相同的自然数的和,且使这些自然数的乘积最大。

输入

只一个正整数n,(3≤n≤10000)。

输出

第一行是分解方案,相邻的数之间用一个空格分开,并且按由小到大的顺序。
第二行是最大的乘积。

数据范围限制

30%的数据 3<=n<=100

Code

# include<cmath>
# include<cstdio>    
# include<cstring>
# include<iostream>
# include <algorithm>
using namespace std;
int n = 0,tot = 0,sum[10003];
int ans[251],che[251];
int main()
{
	freopen("max.in","r",stdin);
	freopen("max.out","w",stdout);
    scanf("%d",&n);
    double gs = (double)n * 2 + 2;
	gs = (double)1 + 4 * gs;
	gs = sqrt(gs);
	gs = (-1 + gs) / 2;
    int tot = (int)gs;
    int fen = n - ((tot + 2) * (tot - 1) / 2);
    int jia = fen / (tot - 1),sy = fen - (tot - 1) * jia;
    for(int x = 2;x <= tot;x++)
		sum[x] = x + jia;
    for(int x = tot;x > tot - sy;x--)
		sum[x]++;
    ans[0] = 1,ans[1] = 1;
    for(int x = 2;x <= tot;x++)
	{
        cout << sum[x] << " ";
        memset(che,0,sizeof(che));
        for(int y = 1;y <= ans[0];y++)
			che[y] = ans[y] * sum[x];
        int cnt = 1;
        while(1)
		{
            if(cnt > ans[0] && che[cnt] == 0)
				break;
            ans[cnt] = che[cnt] % 10;
            che[cnt + 1] += che[cnt] / 10;
            cnt++;
        }
        ans[0] = cnt - 1;
    }
	cout << endl;
    for(int x = ans[0];x >= 1;x--)
		cout << ans[x];
}
T = 0.1; % 常数参数 T tspan = 0:0.01:100; % 时间范围 x0 =0.85; % 初始条件 x(0) dxdt = @(t, x) (0.871 * I(T,t,P_x(x)) - x * O(t))/(12500*pi); [t, x] = ode45(dxdt, tspan, x0); P = arrayfun(@(x_val) P_x(x_val), x); figure; plot(t, P, &#39;LineWidth&#39;, 2, &#39;Color&#39;, [0.2 0.6 1]); xlabel(&#39;Time t&#39;); ylabel(&#39;P&#39;); title(&#39;P vs Time t&#39;); grid on; box on; figure; plot(x, P, &#39;LineWidth&#39;, 2, &#39;Color&#39;, [0.8 0.3 0.1]); xlabel(&#39;State Variable x&#39;); ylabel(&#39;P&#39;); title(&#39;P vs x&#39;); grid on; box on; figure; plot(t,x, &#39;LineWidth&#39;, 2, &#39;Color&#39;, [0.8 0.3 0.1]); xlabel(&#39;State Variable t&#39;); ylabel(&#39;x&#39;); title(&#39;xvs t&#39;); grid on; box on; function O = O(t) i = floor(t / 100); t_rel = t - 100 * i; if t_rel >= 0 && t_rel <= 0.2 O = 100 * t_rel; elseif t_rel > 0.2 && t_rel <= 2.2 O = 20; elseif t_rel > 2.2 && t_rel <= 2.4 O = -100 * t_rel + 240; else O = 0; end end function I = I(T, t, P) % 计算周期长度 (T + 10) period = T + 10; t_rel = mod(t, period); if t_rel >= T && t_rel < period I = 0; else delta_P = max(160 - P, 0); % 防止负值 I = 0.85 * pi * 0.49 * sqrt(2 * delta_P / 0.871); end end function h = P_x(y) persistent f_interp g_interp if isempty(f_interp) % 一次性拟合 P-E 曲线 P = 0:0.5:200; E = [1538.4 1540.8 1543.3 1545.7 1548.2 1550.6 1553.1 1555.6 1558 1560.5 1563 1565.5 1568 1570.5 1573 1575.5 1578 1580.6 1583.1 1585.6 1588.2 1590.7 1593.3 1595.9 1598.4 1601 1603.6 1606.2 1608.8 1611.3 1614 1616.6 1619.2 1621.8 1624.4 1627.1 1629.7 1632.4 1635 1637.7 1640.3 1643 1645.7 1648.4 1651.1 1653.8 1656.5 1659.2 1661.9 1664.6 1667.4 1670.1 1672.8 1675.6 1678.3 1681.1 1683.9 1686.7 1689.5 1692.2 1695 1697.8 1700.7 1703.5 1706.3 1709.1 1712 1714.8 1717.7 1720.6 1723.4 1726.3 1729.2 1732.1 1735 1737.9 1740.8 1743.7 1746.7 1749.6 1752.5 1755.5 1758.4 1761.4 1764.4 1767.4 1770.4 1773.4 1776.4 1779.4 1782.4 1785.4 1788.5 1791.5 1794.6 1797.6 1800.7 1803.8 1806.8 1809.9 1813 1816.1 1819.3 1822.4 1825.5 1828.7 1831.8 1835 1838.1 1841.3 1844.5 1847.7 1850.9 1854.1 1857.3 1860.6 1863.8 1867 1870.3 1873.6 1876.8 1880.1 1883.4 1886.7 1890 1893.3 1896.7 1900 1903.3 1906.7 1910 1913.4 1916.8 1920.2 1923.6 1927 1930.4 1933.8 1937.3 1940.7 1944.2 1947.7 1951.1 1954.6 1958.1 1961.6 1965.2 1968.7 1972.2 1975.8 1979.3 1982.9 1986.5 1990.1 1993.7 1997.3 2000.9 2004.5 2008.2 2011.8 2015.5 2019.2 2022.9 2026.5 2030.3 2034 2037.7 2041.4 2045.2 2049 2052.7 2056.5 2060.3 2064.1 2067.9 2071.8 2075.6 2079.5 2083.3 2087.2 2091.1 2095 2098.9 2102.8 2106.7 2110.7 2114.7 2118.6 2122.6 2126.6 2130.6 2134.7 2138.7 2142.7 2146.8 2150.9 2155 2159.1 2163.2 2167.3 2171.4 2175.6 2179.7 2183.9 2188.1 2192.3 2196.5 2200.8 2205 2209.3 2213.5 2217.8 2222.1 2226.4 2230.7 2235.1 2239.4 2243.8 2248.2 2252.6 2257 2261.4 2265.9 2270.3 2274.8 2279.3 2283.8 2288.3 2292.8 2297.4 2301.9 2306.5 2311.1 2315.7 2320.3 2324.9 2329.6 2334.3 2339 2343.7 2348.4 2353.1 2357.8 2362.6 2367.4 2372.2 2377 2381.8 2386.7 2391.5 2396.4 2401.3 2406.2 2411.2 2416.1 2421.1 2426.1 2431.1 2436.1 2441.1 2446.2 2451.3 2456.3 2461.5 2466.6 2471.7 2476.9 2482.1 2487.3 2492.5 2497.7 2503 2508.3 2513.6 2518.9 2524.2 2529.6 2534.9 2540.3 2545.8 2551.2 2556.6 2562.1 2567.6 2573.1 2578.7 2584.2 2589.8 2595.4 2601 2606.7 2612.3 2618 2623.7 2629.4 2635.2 2641 2646.7 2652.6 2658.4 2664.3 2670.1 2676 2682 2687.9 2693.9 2699.9 2705.9 2712 2718 2724.1 2730.2 2736.4 2742.6 2748.7 2755 2761.2 2767.5 2773.8 2780.1 2786.4 2792.8 2799.2 2805.6 2812 2818.5 2825 2831.5 2838.1 2844.7 2851.3 2857.9 2864.6 2871.2 2878 2884.7 2891.5 2898.3 2905.1 2912 2918.8 2925.8 2932.7 2939.7 2946.7 2953.7 2960.8 2967.9 2975 2982.2 2989.3 2996.6 3003.8 3011.1 3018.4 3025.8 3033.1 3040.5 3048 3055.5 3063 3070.5 3078.1 3085.7 3093.3 3101 3108.7 3116.5 3124.3 3132.1 3139.9 3147.8 3155.7 3163.7 3171.7 3179.7 3187.8 3195.9 3204.1 3212.2 3220.5 3228.7 3237 3245.4 3253.7 3262.2 3270.6 3279.1 3287.6 3296.2 3304.8 3313.5 3322.2 3331 3339.7 3348.6 3357.4 3366.4 3375.3 3384.3 3393.4]&#39;; X = polyfit(P, E, 10); f_interp = @(p) polyval(X, p); dpdx = @(x, p) f_interp(p) / x; x_span = [0.85, 0.9]; p_initial = 100; options = odeset(&#39;RelTol&#39;, 1e-6, &#39;AbsTol&#39;, 1e-9); [x, p] = ode15s(dpdx, x_span, p_initial, options); figure; plot(x,p); % 拟合插值函数 g(y) X2 = polyfit(x, p, 10); g_interp = @(y) polyval(X2, y); end h = g_interp(y); end IO没有被一直调用
最新发布
08-12
P=0:400; E=[1538.4 1540.8 1543.3 1545.7 1548.2 1550.6 1553.1 1555.6 1558 1560.5 1563 1565.5 1568 1570.5 1573 1575.5 1578 1580.6 1583.1 1585.6 1588.2 1590.7 1593.3 1595.9 1598.4 1601 1603.6 1606.2 1608.8 1611.3 1614 1616.6 1619.2 1621.8 1624.4 1627.1 1629.7 1632.4 1635 1637.7 1640.3 1643 1645.7 1648.4 1651.1 1653.8 1656.5 1659.2 1661.9 1664.6 1667.4 1670.1 1672.8 1675.6 1678.3 1681.1 1683.9 1686.7 1689.5 1692.2 1695 1697.8 1700.7 1703.5 1706.3 1709.1 1712 1714.8 1717.7 1720.6 1723.4 1726.3 1729.2 1732.1 1735 1737.9 1740.8 1743.7 1746.7 1749.6 1752.5 1755.5 1758.4 1761.4 1764.4 1767.4 1770.4 1773.4 1776.4 1779.4 1782.4 1785.4 1788.5 1791.5 1794.6 1797.6 1800.7 1803.8 1806.8 1809.9 1813 1816.1 1819.3 1822.4 1825.5 1828.7 1831.8 1835 1838.1 1841.3 1844.5 1847.7 1850.9 1854.1 1857.3 1860.6 1863.8 1867 1870.3 1873.6 1876.8 1880.1 1883.4 1886.7 1890 1893.3 1896.6 1900 1903.3 1906.7 1910 1913.4 1916.8 1920.2 1923.6 1927 1930.4 1933.8 1937.3 1940.7 1944.2 1947.7 1951.1 1954.6 1958.1 1961.6 1965.2 1968.7 1972.2 1975.8 1979.3 1982.9 1986.5 1990.1 1993.7 1997.3 2000.9 2004.5 2008.2 2011.8 2015.5 2019.2 2022.9 2026.5 2030.3 2034 2037.7 2041.4 2045.2 2049 2052.7 2056.5 2060.3 2064.1 2067.9 2071.8 2075.6 2079.5 2083.3 2087.2 2091.1 2095 2098.9 2102.8 2106.8 2110.7 2114.7 2118.6 2122.6 2126.6 2130.6 2134.7 2138.7 2142.7 2146.8 2150.9 2155 2159.1 2163.2 2167.3 2171.4 2175.6 2179.7 2183.9 2188.1 2192.3 2196.5 2200.8 2205 2209.3 2213.5 2217.8 2222.1 2226.4 2230.7 2235.1 2239.4 2243.8 2248.2 2252.6 2257 2261.4 2265.9 2270.3 2274.8 2279.3 2283.8 2288.3 2292.8 2297.4 2301.9 2306.5 2311.1 2315.7 2320.3 2324.9 2329.6 2334.3 2339 2343.7 2348.4 2353.1 2357.8 2362.6 2367.4 2372.2 2377 2381.8 2386.7 2391.5 2396.4 2401.3 2406.2 2411.2 2416.1 2421.1 2426.1 2431.1 2436.1 2441.1 2446.2 2451.3 2456.3 2461.5 2466.6 2471.7 2476.9 2482.1 2487.3 2492.5 2497.7 2503 2508.3 2513.6 2518.9 2524.2 2529.6 2534.9 2540.3 2545.8 2551.2 2556.6 2562.1 2567.6 2573.1 2578.7 2584.2 2589.8 2595.4 2601 2606.7 2612.3 2618 2623.7 2629.4 2635.2 2641 2646.7 2652.6 2658.4 2664.3 2670.1 2676 2682 2687.9 2693.9 2699.9 2705.9 2712 2718 2724.1 2730.2 2736.4 2742.6 2748.7 2755 2761.2 2767.5 2773.8 2780.1 2786.4 2792.8 2799.2 2805.6 2812 2818.5 2825 2831.5 2838.1 2844.7 2851.3 2857.9 2864.6 2871.2 2878 2884.7 2891.5 2898.3 2905.1 2912 2918.8 2925.8 2932.7 2939.7 2946.7 2953.7 2960.8 2967.9 2975 2982.2 2989.3 2996.6 3003.8 3011.1 3018.4 3025.8 3033.1 3040.5 3048 3055.5 3063 3070.5 3078.1 3085.7 3093.3 3101 3108.7 3116.5 3124.3 3132.1 3139.9 3147.8 3155.7 3163.7 3171.7 3179.7 3187.8 3195.9 3204.1 3212.2 3220.5 3228.7 3237 3245.4 3253.7 3262.2 3270.6 3279.1 3287.6 3296.2 3304.8 3313.5 3322.2 3331 3339.7 3348.6 3357.4 3366.4 3375.3 3384.3 3393.4]&#39;;
08-10
%% 完整物流路径优化方案(修正版) % 包含以下改进: % 1. 参数集中管理 % 2. 输入验证机制 % 3. 性能优化 % 4. 可视化增强 %% 主程序框架 function main_logistics_optimization() % 初始化环境 clear; clc; close all; %% 数据加载模块 try [node_coords, customer_data] = load_input_data(); catch ME error(&#39;数据加载失败: %s&#39;, ME.message); end %% 参数配置 params = initialize_parameters(node_coords, customer_data); %% 距离矩阵生成(带缓存) if exist(&#39;distance_matrix.mat&#39;, &#39;file&#39;) load(&#39;distance_matrix.mat&#39;, &#39;distance_matrix&#39;); else distance_matrix = create_distance_matrix(... [params.node_coords; params.customer_coords],... params.distance_method); save(&#39;distance_matrix.mat&#39;, &#39;distance_matrix&#39;); end %% 遗传算法优化 [best_solution, best_cost] = genetic_algorithm_optimizer(params, distance_matrix); %% 结果展示 visualize_results(best_solution, params, distance_matrix); end %% 数据加载函数(带验证) function [node_coords, customer_data] = load_input_data() % 修正后的坐标定义与验证 try % 正确声明原始坐标变量 raw_node_coords = [ % 变量名修正为raw_node_coords 108.2159 33.1062 108.2766 33.1397 108.3082 33.0527 108.2666 33.0092 108.2160 33.0834]; % 使用正确的变量名进行验证 node_coords = validate_node_coordinates(raw_node_coords); validateattributes(node_coords, {&#39;numeric&#39;},... {&#39;ncols&#39;,2, &#39;>=&#39;, 100, &#39;<=&#39;, 150}, &#39;load_input_data&#39;, &#39;节点坐标&#39;); % 增强型客户数据加载 try [~, ~, raw] = xlsread(&#39;工作簿2.xlsx&#39;, &#39;Sheet1&#39;); % 数据清洗 raw(cellfun(@(x) any(ismissing(x)), raw)) = {0}; % 处理缺失值 customer_data = cell2mat(raw); % 列数验证 if size(customer_data,2) < 4 error(&#39;客户数据需要至少4列(坐标X,Y + 配送需 + 回收需)&#39;); end % 截断多余列 customer_data = customer_data(:,1:4); catch ME % 详细错误报告 fprintf(&#39;数据加载错误详情:\n&#39;); fprintf(&#39;错误类型:%s\n&#39;, ME.identifier); fprintf(&#39;错误信息:%s\n&#39;, ME.message); % 安全示例数据生成 warning(&#39;生成安全示例数据...&#39;); num_samples = 20; customer_data = [... rand(num_samples,2).*[0.1 0.1] + [108.2 33.0],... % 坐标 randi([3,8], num_samples,1),... % 配送需 randi([1,5], num_samples,1)]; % 回收需 end % 增强验证 validateattributes(customer_data, {&#39;numeric&#39;},... {&#39;ncols&#39;,4, &#39;nonempty&#39;, &#39;nonnan&#39;},... &#39;load_input_data&#39;, &#39;客户数据&#39;); % 范围验证 assert(all(customer_data(:,1) >= 108.0 & customer_data(:,1) <= 108.5),... &#39;X坐标超出合理范围&#39;); assert(all(customer_data(:,2) >= 33.0 & customer_data(:,2) <= 33.2),... &#39;Y坐标超出合理范围&#39;); assert(all(customer_data(:,3) >= 0), &#39;配送需不能为负&#39;); assert(all(customer_data(:,4) >= 0), &#39;回收需不能为负&#39;); end end %% 参数初始化函数 function params = initialize_parameters(node_coords, customer_data) params = struct(); % 基础参数 params.node_coords = node_coords; params.customer_coords = customer_data(:,1:2); params.delivery_demand = customer_data(:,3); params.recycle_demand = customer_data(:,4); % 物流参数 params.vehicle_capacity = 10; % 单车运载量 params.depot_capacity = 10000; % 节点服务能力 params.operating_cost = 160000; % 节点运营成本 params.distance_cost = 1.5; % 单位距离成本 params.max_distance = 400; % 单程最大距离(km) % 遗传算法参数 params.pop_size = 100; % 种群数量 params.max_gen = 200; % 最大迭代次数 params.cross_rate = 0.85; % 交叉概率 params.mutate_rate = 0.1; % 变异概率 params.distance_method = &#39;euclidean&#39;; % 距离计算方法 end %% 优化器核心 function [best_solution, best_cost] = genetic_algorithm_optimizer(params, distance_matrix) % 种群初始化 population = initialize_population(params); % 进化循环 best_cost = Inf; cost_history = zeros(params.max_gen, 1); for gen = 1:params.max_gen % 计算适应度 costs = evaluate_population(population, params, distance_matrix); % 记录最佳解 [min_cost, idx] = min(costs); cost_history(gen) = min_cost; if min_cost < best_cost best_solution = population{idx}; best_cost = min_cost; fprintf(&#39;Generation %d: 新最优成本 %.2f\n&#39;, gen, best_cost); end % 进化操作 population = evolve_population(population, costs, params); end % 收敛曲线可视化 figure; plot(cost_history, &#39;LineWidth&#39;,2); title(&#39;收敛曲线&#39;); xlabel(&#39;迭代次数&#39;); ylabel(&#39;最低成本&#39;); grid on; end %% 种群初始化(带有效性验证) function population = initialize_population(params) population = cell(params.pop_size, 1); num_cust = size(params.customer_coords, 1); num_nodes = size(params.node_coords, 1); for i = 1:params.pop_size while true chrom = create_chromosome(num_nodes, num_cust); if validate_chromosome(chrom, params) population{i} = chrom; break; end end end end %% 染色体生成函数 function chrom = create_chromosome(num_nodes, num_cust) allocation = randi(num_nodes, 1, num_cust); sequence = randperm(num_cust); chrom = [allocation, sequence]; end %% 染色体有效性验证 function valid = validate_chromosome(chrom, params) num_cust = length(params.delivery_demand); % 基本结构验证 if length(chrom) ~= 2*num_cust valid = false; return; end % 分配有效性验证 allocation = chrom(1:num_cust); if any(allocation < 1 | allocation > size(params.node_coords,1)) valid = false; return; end % 路径序列验证 sequence = chrom(num_cust+1:end); if length(unique(sequence)) ~= num_cust || any(sequence < 1 | sequence > num_cust) valid = false; return; end valid = true; end %% 适应度计算(优化版) function costs = evaluate_population(population, params, distance_matrix) costs = zeros(size(population)); parfor i = 1:numel(population) % 启用并行计算 costs(i) = calculate_fitness(population{i}, params, distance_matrix); end end %% 改进的适应度计算函数 function total_cost = calculate_fitness(chrom, params, distance_matrix) % 参数解包 num_nodes = size(params.node_coords, 1); num_cust = size(params.customer_coords, 1); % 解析染色体 allocation = chrom(1:num_cust); sequence = chrom(num_cust+1:end); % 初始化成本 total_cost = 0; % 节点循环 for n = 1:num_nodes % 当前节点的客户索引 node_customers = find(allocation == n); % 计算节点总需 total_demand = sum(params.delivery_demand(node_customers)); % 能力约束检查 if total_demand > params.depot_capacity total_cost = total_cost + 1e6; % 大惩罚项 continue; end % 路径规划 if ~isempty(node_customers) % 获取排序后的路径 [~, order] = ismember(node_customers, sequence); [~, sorted_idx] = sort(order); route_order = node_customers(sorted_idx); % 车辆调度计算 [route_cost, vehicle_count] = vehicle_dispatch(... route_order, n, params, distance_matrix); % 累加成本 total_cost = total_cost + route_cost + ... params.operating_cost + ... vehicle_count * 8000; % 车辆固定成本 end end end %% 车辆调度核心算法 function [route_cost, vehicle_count] = vehicle_dispatch(route_order, node_id, params, distance_matrix) route_cost = 0; vehicle_count = 0; current_load = 0; current_distance = 0; last_point = node_id; for i = 1:length(route_order) customer_idx = route_order(i) + size(params.node_coords,1); seg_distance = distance_matrix(last_point, customer_idx); % 约束检查 if (current_load + params.delivery_demand(route_order(i)) > params.vehicle_capacity) || ... (current_distance + seg_distance > params.max_distance) % 返回节点 return_distance = distance_matrix(last_point, node_id); route_cost = route_cost + (current_distance + return_distance) * params.distance_cost; % 新车辆 vehicle_count = vehicle_count + 1; current_load = 0; current_distance = 0; last_point = node_id; end % 更新状态 current_load = current_load + params.delivery_demand(route_order(i)); current_distance = current_distance + seg_distance; last_point = customer_idx; end % 处理最后未完成的路线 if current_distance > 0 return_distance = distance_matrix(last_point, node_id); route_cost = route_cost + (current_distance + return_distance) * params.distance_cost; vehicle_count = vehicle_count + 1; end end %% 进化操作 function new_population = evolve_population(population, costs, params) % 选择操作 selected = tournament_selection(population, costs, params.pop_size); % 交叉操作 new_population = crossover_operation(selected, params); % 变异操作 new_population = mutation_operation(new_population, params); end %% 锦标赛选择 function selected = tournament_selection(population, costs, pop_size) selected = cell(pop_size, 1); tournament_size = 3; for i = 1:pop_size candidates = randperm(length(population), tournament_size); [~, idx] = min(costs(candidates)); selected{i} = population{candidates(idx)}; end end %% 增强型交叉操作 function new_population = crossover_operation(population, params) new_population = cell(size(population)); num_parents = length(population); num_cust = floor(length(population{1}) / 2); for i = 1:2:num_parents if rand() < params.cross_rate parent1 = population{i}; parent2 = population{i+1}; % 改进的交叉策略 [child1, child2] = enhanced_crossover(parent1, parent2, num_cust); new_population{i} = child1; new_population{i+1} = child2; else new_population{i} = population{i}; new_population{i+1} = population{i+1}; end end end %% 增强型交叉函数 function [child1, child2] = enhanced_crossover(parent1, parent2, num_cust) % 分配部分交叉 mask = rand(1, num_cust) > 0.5; child1_alloc = parent1(1:num_cust).*mask + parent2(1:num_cust).*(~mask); child2_alloc = parent1(1:num_cust).*(~mask) + parent2(1:num_cust).*mask; % 路径顺序交叉 [child1_seq, child2_seq] = ox_crossover(... parent1(num_cust+1:end),... parent2(num_cust+1:end)); child1 = [child1_alloc, child1_seq]; child2 = [child2_alloc, child2_seq]; end %% 变异操作 function population = mutation_operation(population, params) num_cust = floor(length(population{1}) / 2); num_nodes = size(params.node_coords,1); for i = 1:numel(population) if rand() < params.mutate_rate population{i} = guided_mutation(population{i}, num_nodes, num_cust); end end end %% 指导式变异 function mutated = guided_mutation(chrom, num_nodes, num_cust) if rand() < 0.7 % 分配变异 pos = randi(num_cust); mutated = chrom; mutated(pos) = randi(num_nodes); else % 路径变异 seq = chrom(num_cust+1:end); swap_pos = randperm(num_cust, 2); seq(swap_pos) = seq(fliplr(swap_pos)); mutated = [chrom(1:num_cust), seq]; end end %% 可视化模块增强 function visualize_results(solution, params, distance_matrix) figure(&#39;Position&#39;, [100, 100, 1200, 800]); % 基础可视化 subplot(2,2,[1,3]); visualize_routes(solution, params); % 距离矩阵可视化 subplot(2,2,2); imagesc(distance_matrix); colorbar; title(&#39;距离矩阵&#39;); % 需分布可视化 subplot(2,2,4); bar([params.delivery_demand, params.recycle_demand]); title(&#39;客户需分布&#39;); xlabel(&#39;客户编号&#39;); ylabel(&#39;需量&#39;); legend(&#39;配送需&#39;, &#39;回收需&#39;); end %% 增强版路径可视化 function visualize_routes(chrom, params) hold on; % 绘制节点 scatter(params.node_coords(:,1), params.node_coords(:,2),... 150, &#39;k^&#39;, &#39;filled&#39;, &#39;DisplayName&#39;, &#39;配送中心&#39;); % 绘制客户 scatter(params.customer_coords(:,1), params.customer_coords(:,2),... 80, &#39;bo&#39;, &#39;filled&#39;, &#39;DisplayName&#39;, &#39;客户点&#39;); % 解析路径 num_cust = size(params.customer_coords,1); allocation = chrom(1:num_cust); sequence = chrom(num_cust+1:end); colors = lines(size(params.node_coords,1)); for n = 1:size(params.node_coords,1) node_customers = find(allocation == n); if ~isempty(node_customers) % 获取排序路径 [~, order] = ismember(node_customers, sequence); [~, sorted_idx] = sort(order); sorted_customers = node_customers(sorted_idx); % 构建完整路径 route = [params.node_coords(n,:); params.customer_coords(sorted_customers,:); params.node_coords(n,:)]; % 绘制路径 plot(route(:,1), route(:,2), &#39;Color&#39;, colors(n,:),... &#39;LineWidth&#39;, 1.5, &#39;DisplayName&#39;, sprintf(&#39;路径%d&#39;,n)); end end hold off; title(&#39;最优配送路径&#39;); xlabel(&#39;经度&#39;); ylabel(&#39;纬度&#39;); legend(&#39;Location&#39;,&#39;bestoutside&#39;); grid on; end function node_coords = validate_node_coordinates(input_coords) % 参数验证增强版(分经度/纬度验证) try % 基础结构验证 validateattributes(input_coords, {&#39;numeric&#39;},... {&#39;2d&#39;, &#39;ncols&#39;,2, &#39;real&#39;, &#39;finite&#39;},... &#39;validate_node_coordinates&#39;, &#39;节点坐标&#39;); % 分列范围验证 valid_lon_range = [100 120]; % 合理经度范围(中国地区) valid_lat_range = [20 40]; % 合理纬度范围(中国地区) % 经度验证(第一列) validateattributes(input_coords(:,1), {&#39;numeric&#39;},... {&#39;>=&#39;, valid_lon_range(1), &#39;<=&#39;, valid_lon_range(2)},... &#39;validate_node_coordinates&#39;, &#39;经度值&#39;); % 纬度验证(第二列) validateattributes(input_coords(:,2), {&#39;numeric&#39;},... {&#39;>=&#39;, valid_lat_range(1), &#39;<=&#39;, valid_lat_range(2)},... &#39;validate_node_coordinates&#39;, &#39;纬度值&#39;); node_coords = input_coords; catch ME % 智能修正机制 fprintf(&#39;坐标验证错误:%s\n&#39;, ME.message); fprintf(&#39;启动自动地理修正...\n&#39;); % 保留原始数据结构 node_coords = input_coords; % 经度修正(第一列) node_coords(:,1) = max(node_coords(:,1), valid_lon_range(1)); node_coords(:,1) = min(node_coords(:,1), valid_lon_range(2)); % 纬度修正(第二列) node_coords(:,2) = max(node_coords(:,2), valid_lat_range(1)); node_coords(:,2) = min(node_coords(:,2), valid_lat_range(2)); % 修正后验证 validateattributes(node_coords, {&#39;numeric&#39;},... {&#39;2d&#39;, &#39;ncols&#39;,2}, &#39;validate_node_coordinates&#39;, &#39;修正后坐标&#39;); warning(&#39;已自动修正坐标至有效范围:\n%s&#39;, mat2str(node_coords)); end end
05-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值