tensorflow中的 Conv1d Conv2d Conv3d

本文介绍了TensorFlow中用于不同维度数据的卷积操作,包括Conv1d、Conv2d和Conv3d。Conv1d主要用于序列模型和自然语言处理,Conv2d适用于图像数据,而Conv3d则应用于3D数据。讨论了参数如滤波器数量、卷积核大小、步长和填充方式,并提及了空洞率(dilation_rate)在改变卷积核效果中的作用。
  def __init__(self,
               filters,
               kernel_size,
               strides=1,
               padding='valid',
               data_format='channels_last',
               dilation_rate=1,
               groups=1,
               activation=None,
               use_bias=True,
               kernel_initializer='glorot_uniform',
               bias_initializer='zeros',
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):

参数:

filters:滤波器的个数。

kernel_size:卷积核的大小

strides:表示步

padding:填充。填充的方式,valid, causal &

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值