突然忘记怎么证明 t r A B = t r B A tr AB= tr BA trAB=trBA,于是自己推导了一遍。记录下来,强化记忆。
开始证明
首先给定两个
n
n
n 阶方阵
A
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
)
B
=
(
b
11
b
12
⋯
b
1
n
b
21
b
22
⋯
b
2
n
⋮
⋮
⋱
⋮
b
n
1
b
n
2
⋯
b
n
n
)
A=\begin{pmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{pmatrix}\quad B=\begin{pmatrix} {b_{11}}&{b_{12}}&{\cdots}&{b_{1n}}\\ {b_{21}}&{b_{22}}&{\cdots}&{b_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {b_{n1}}&{b_{n2}}&{\cdots}&{b_{nn}}\\ \end{pmatrix}
A=⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann⎠⎟⎟⎟⎞B=⎝⎜⎜⎜⎛b11b21⋮bn1b12b22⋮bn2⋯⋯⋱⋯b1nb2n⋮bnn⎠⎟⎟⎟⎞算算
t
r
A
B
tr AB
trAB
A
B
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
)
⋅
(
b
11
b
12
⋯
b
1
n
b
21
b
22
⋯
b
2
n
⋮
⋮
⋱
⋮
b
n
1
b
n
2
⋯
b
n
n
)
AB=\begin{pmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{pmatrix}\cdot \begin{pmatrix} {b_{11}}&{b_{12}}&{\cdots}&{b_{1n}}\\ {b_{21}}&{b_{22}}&{\cdots}&{b_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {b_{n1}}&{b_{n2}}&{\cdots}&{b_{nn}}\\ \end{pmatrix}
AB=⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann⎠⎟⎟⎟⎞⋅⎝⎜⎜⎜⎛b11b21⋮bn1b12b22⋮bn2⋯⋯⋱⋯b1nb2n⋮bnn⎠⎟⎟⎟⎞
t
r
A
B
=
∑
j
=
1
n
a
1
j
b
j
1
+
∑
j
=
1
n
a
2
j
b
j
2
+
⋯
∑
j
=
1
n
a
n
j
b
j
n
=
∑
i
=
1
n
∑
j
=
1
n
a
i
j
b
j
i
tr AB=\sum_{j=1}^{n}a_{1j}b_{j1}+\sum_{j=1}^{n}a_{2j}b_{j2}+\cdots\sum_{j=1}^{n}a_{nj}b_{jn}\\ =\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}b_{ji}
trAB=j=1∑na1jbj1+j=1∑na2jbj2+⋯j=1∑nanjbjn=i=1∑nj=1∑naijbji再算算
t
r
B
A
tr BA
trBA
B
A
=
(
b
11
b
12
⋯
b
1
n
b
21
b
22
⋯
b
2
n
⋮
⋮
⋱
⋮
b
n
1
b
n
2
⋯
b
n
n
)
⋅
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
)
BA=\begin{pmatrix} {b_{11}}&{b_{12}}&{\cdots}&{b_{1n}}\\ {b_{21}}&{b_{22}}&{\cdots}&{b_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {b_{n1}}&{b_{n2}}&{\cdots}&{b_{nn}}\\ \end{pmatrix}\cdot \begin{pmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{pmatrix}
BA=⎝⎜⎜⎜⎛b11b21⋮bn1b12b22⋮bn2⋯⋯⋱⋯b1nb2n⋮bnn⎠⎟⎟⎟⎞⋅⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann⎠⎟⎟⎟⎞
t
r
B
A
=
∑
j
=
1
n
b
1
j
a
j
1
+
∑
j
=
1
n
b
2
j
a
j
2
+
⋯
∑
j
=
1
n
b
n
j
a
j
n
=
∑
i
=
1
n
∑
j
=
1
n
b
i
j
a
j
i
tr BA=\sum_{j=1}^{n}b_{1j}a_{j1}+\sum_{j=1}^{n}b_{2j}a_{j2}+\cdots\sum_{j=1}^{n}b_{nj}a_{jn}\\ =\sum_{i=1}^{n}\sum_{j=1}^{n}b_{ij}a_{ji}
trBA=j=1∑nb1jaj1+j=1∑nb2jaj2+⋯j=1∑nbnjajn=i=1∑nj=1∑nbijaji
问题关键
原命题也就是要证明
∑
i
=
1
n
∑
j
=
1
n
a
i
j
b
j
i
=
∑
i
=
1
n
∑
j
=
1
n
b
i
j
a
j
i
\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}b_{ji}=\sum_{i=1}^{n}\sum_{j=1}^{n}b_{ij}a_{ji}
i=1∑nj=1∑naijbji=i=1∑nj=1∑nbijaji
t
r
A
B
tr AB
trAB也可以这样来看:
∑
a
x
y
b
y
x
x
,
y
∈
1
,
2
,
⋯
n
\sum a_{xy}b_{yx}\quad x,y \in 1,2,\cdots n\quad
∑axybyxx,y∈1,2,⋯n其中
x
y
xy
xy 有
n
2
n^{2}
n2 种组合
同理
 
t
r
B
A
=
∑
b
x
y
a
y
x
x
,
y
∈
1
,
2
,
⋯
n
\,tr BA=\sum b_{xy}a_{yx}\quad x,y \in 1,2,\cdots n
trBA=∑bxyayxx,y∈1,2,⋯n
可见
x
y
xy
xy 从
11
11
11 取到
n
n
nn
nn,显然两者是等价的
另一个角度理解
因为下标
i
,
j
i,j
i,j 互不影响,是可以互换顺序的
t
r
B
A
=
∑
i
=
1
n
∑
j
=
1
n
b
i
j
a
j
i
=
∑
j
=
1
n
∑
i
=
1
n
b
i
j
a
j
i
tr BA=\sum_{i=1}^{n}\sum_{j=1}^{n}b_{ij}a_{ji}=\sum_{j=1}^{n}\sum_{i=1}^{n}b_{ij}a_{ji}
trBA=i=1∑nj=1∑nbijaji=j=1∑ni=1∑nbijaji再用
j
′
,
i
′
j',i'
j′,i′ 替换
i
,
j
i,j
i,j 得到
t
r
B
A
=
∑
i
′
=
1
n
∑
j
′
=
1
n
b
j
′
i
′
a
i
′
j
′
=
∑
i
′
=
1
n
∑
j
′
=
1
n
a
i
′
j
′
b
j
′
i
′
tr BA=\sum_{i'=1}^{n}\sum_{j'=1}^{n}b_{j'i'}a_{i'j'}=\sum_{i'=1}^{n}\sum_{j'=1}^{n}a_{i'j'}b_{j'i'}
trBA=i′=1∑nj′=1∑nbj′i′ai′j′=i′=1∑nj′=1∑nai′j′bj′i′这时就可以看出来
t
r
A
B
=
t
r
B
A
tr AB= tr BA
trAB=trBA