tr AB = tr BA的证明

突然忘记怎么证明 t r A B = t r B A tr AB= tr BA trAB=trBA,于是自己推导了一遍。记录下来,强化记忆。

开始证明

首先给定两个 n n n 阶方阵
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) B = ( b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b n 1 b n 2 ⋯ b n n ) A=\begin{pmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{pmatrix}\quad B=\begin{pmatrix} {b_{11}}&{b_{12}}&{\cdots}&{b_{1n}}\\ {b_{21}}&{b_{22}}&{\cdots}&{b_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {b_{n1}}&{b_{n2}}&{\cdots}&{b_{nn}}\\ \end{pmatrix} A=a11a21an1a12a22an2a1na2nannB=b11b21bn1b12b22bn2b1nb2nbnn算算 t r A B tr AB trAB
A B = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) ⋅ ( b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b n 1 b n 2 ⋯ b n n ) AB=\begin{pmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{pmatrix}\cdot \begin{pmatrix} {b_{11}}&{b_{12}}&{\cdots}&{b_{1n}}\\ {b_{21}}&{b_{22}}&{\cdots}&{b_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {b_{n1}}&{b_{n2}}&{\cdots}&{b_{nn}}\\ \end{pmatrix} AB=a11a21an1a12a22an2a1na2nannb11b21bn1b12b22bn2b1nb2nbnn t r A B = ∑ j = 1 n a 1 j b j 1 + ∑ j = 1 n a 2 j b j 2 + ⋯ ∑ j = 1 n a n j b j n = ∑ i = 1 n ∑ j = 1 n a i j b j i tr AB=\sum_{j=1}^{n}a_{1j}b_{j1}+\sum_{j=1}^{n}a_{2j}b_{j2}+\cdots\sum_{j=1}^{n}a_{nj}b_{jn}\\ =\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}b_{ji} trAB=j=1na1jbj1+j=1na2jbj2+j=1nanjbjn=i=1nj=1naijbji再算算 t r B A tr BA trBA
B A = ( b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b n 1 b n 2 ⋯ b n n ) ⋅ ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) BA=\begin{pmatrix} {b_{11}}&{b_{12}}&{\cdots}&{b_{1n}}\\ {b_{21}}&{b_{22}}&{\cdots}&{b_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {b_{n1}}&{b_{n2}}&{\cdots}&{b_{nn}}\\ \end{pmatrix}\cdot \begin{pmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{pmatrix} BA=b11b21bn1b12b22bn2b1nb2nbnna11a21an1a12a22an2a1na2nann t r B A = ∑ j = 1 n b 1 j a j 1 + ∑ j = 1 n b 2 j a j 2 + ⋯ ∑ j = 1 n b n j a j n = ∑ i = 1 n ∑ j = 1 n b i j a j i tr BA=\sum_{j=1}^{n}b_{1j}a_{j1}+\sum_{j=1}^{n}b_{2j}a_{j2}+\cdots\sum_{j=1}^{n}b_{nj}a_{jn}\\ =\sum_{i=1}^{n}\sum_{j=1}^{n}b_{ij}a_{ji} trBA=j=1nb1jaj1+j=1nb2jaj2+j=1nbnjajn=i=1nj=1nbijaji

问题关键

原命题也就是要证明
∑ i = 1 n ∑ j = 1 n a i j b j i = ∑ i = 1 n ∑ j = 1 n b i j a j i \sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}b_{ji}=\sum_{i=1}^{n}\sum_{j=1}^{n}b_{ij}a_{ji} i=1nj=1naijbji=i=1nj=1nbijaji t r A B tr AB trAB也可以这样来看: ∑ a x y b y x x , y ∈ 1 , 2 , ⋯ n \sum a_{xy}b_{yx}\quad x,y \in 1,2,\cdots n\quad axybyxx,y1,2,n其中 x y xy xy n 2 n^{2} n2 种组合
同理   t r B A = ∑ b x y a y x x , y ∈ 1 , 2 , ⋯ n \,tr BA=\sum b_{xy}a_{yx}\quad x,y \in 1,2,\cdots n trBA=bxyayxx,y1,2,n
可见 x y xy xy 11 11 11 取到 n n nn nn,显然两者是等价的

另一个角度理解

因为下标 i , j i,j i,j 互不影响,是可以互换顺序的
t r B A = ∑ i = 1 n ∑ j = 1 n b i j a j i = ∑ j = 1 n ∑ i = 1 n b i j a j i tr BA=\sum_{i=1}^{n}\sum_{j=1}^{n}b_{ij}a_{ji}=\sum_{j=1}^{n}\sum_{i=1}^{n}b_{ij}a_{ji} trBA=i=1nj=1nbijaji=j=1ni=1nbijaji再用 j ′ , i ′ j',i' j,i 替换 i , j i,j i,j 得到 t r B A = ∑ i ′ = 1 n ∑ j ′ = 1 n b j ′ i ′ a i ′ j ′ = ∑ i ′ = 1 n ∑ j ′ = 1 n a i ′ j ′ b j ′ i ′ tr BA=\sum_{i'=1}^{n}\sum_{j'=1}^{n}b_{j'i'}a_{i'j'}=\sum_{i'=1}^{n}\sum_{j'=1}^{n}a_{i'j'}b_{j'i'} trBA=i=1nj=1nbjiaij=i=1nj=1naijbji这时就可以看出来 t r A B = t r B A tr AB= tr BA trAB=trBA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值