Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem.
Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty.
Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size.
Input
The first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases.
For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree.
The summation of n in input is smaller than or equal to 200000.
Output
For each test case, output the maximum size of E1 ∩ E1 ... ∩ Ek.
Sample Input
3 4 2 1 2 2 3 3 4 4 2 1 2 1 3 1 4 6 3 1 2 2 3 3 4 3 5 6 2
Sample Output
1 0 1
题意:
一颗无根树,有 n 个节点,现在要给每个节点上 kk 种颜色中的一种,
然后对于第 i 种颜色的所有节点,Ei 是连接这些节点所需要的最少的边的集合;
要求最大的 |E1∩E2∩⋯∩Ek−1∩Ek|。
思路:
某边左右节点数都大于n则满足条件,遍历一遍。
#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
int ans;
const int maxn=2e5+5;
int num[maxn];
vector<int> G[maxn];
int n,k;
int dfs(int u,int pre)
{
num[u]=1;//结点本身也算进去
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(v==pre)
continue;
dfs(v,u);
num[u]+=num[v];
if(num[v]>=k&&n-num[v]>=k)
ans++;
}
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
memset(num,0,sizeof(num));
cin>>n>>k;
for(int i=1;i<=n;i++)
G[i].clear();
for(int i=0;i<n-1;i++)
{
int u,v;
cin>>u>>v;
G[u].push_back(v);
G[v].push_back(u);
}
ans=0;
cout<<dfs(1,-1)<<endl;
}
return 0;
}