HDU 6228 Tree

Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem. 
Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty. 
Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size.

Input

The first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases. 
For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree. 
The summation of n in input is smaller than or equal to 200000. 

Output

For each test case, output the maximum size of E1 ∩ E1 ... ∩ Ek.

Sample Input

3
4 2
1 2
2 3
3 4
4 2
1 2
1 3
1 4
6 3
1 2
2 3
3 4
3 5
6 2

Sample Output

1
0
1

题意:

一颗无根树,有 n 个节点,现在要给每个节点上 kk 种颜色中的一种,

然后对于第 i 种颜色的所有节点,Ei 是连接这些节点所需要的最少的边的集合;

要求最大的 |E1∩E2∩⋯∩Ek−1∩Ek|。

思路:

某边左右节点数都大于n则满足条件,遍历一遍。

#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
int ans;
const int maxn=2e5+5;
int num[maxn];
vector<int> G[maxn];
int n,k;
int dfs(int u,int pre)
{
    num[u]=1;//结点本身也算进去
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(v==pre)
            continue;
        dfs(v,u);
        num[u]+=num[v];
        if(num[v]>=k&&n-num[v]>=k)
            ans++;
    }
    return ans;
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        memset(num,0,sizeof(num));
        cin>>n>>k;
        for(int i=1;i<=n;i++)
            G[i].clear();
        for(int i=0;i<n-1;i++)
        {
            int u,v;
            cin>>u>>v;
            G[u].push_back(v);
            G[v].push_back(u);
        }
        ans=0;
        cout<<dfs(1,-1)<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值