深入了解机器学习之训练与损失

本文介绍了模型训练的基本原理,即通过有标签样本来学习所有权重和偏差的理想值,并详细解释了损失函数的概念及其作用。重点讨论了一种常见的损失函数——平方损失(L2损失),并介绍了如何使用均方误差(MSE)来评估模型预测的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单来说,训练模型表示通过有标签样本来学习(确定)所有权重和偏差的理想值。在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度地减少损失的模型;这一过程称为经验风险最小化。

损失是对糟糕预测的惩罚。也就是说,损失是一个数值,表示对于单个样本而言模型预测的准确程度。如果模型的预测完全准确,则损失为零,否则损失会较大。训练模型的目标是从所有样本中找到一组平均损失“较小”的权重和偏差。例如,图 3 左侧显示的是损失较大的模型,右侧显示的是损失较小的模型。关于此图,请注意以下几点:

  • 红色箭头表示损失。
  • 蓝线表示预测。

两个直角坐标曲线图,每个曲线图显示一条线和一些数据点。在第一个曲线图中,线与数据极其不吻合,所以损失较大。在第二个曲线图中,线与数据比较吻合,所以损失较小。

图 3. 左侧模型的损失较大;右侧模型的损失较小。

 

请注意,左侧曲线图中的红色箭头比右侧曲线图中的对应红色箭头长得多。显然,相较于左侧曲线图中的蓝线,右侧曲线图中的蓝线代表的是预测效果更好的模型。

您可能想知道自己能否创建一个数学函数(损失函数),以有意义的方式汇总各个损失。

平方损失:一种常见的损失函数

接下来我们要看的线性回归模型使用的是一种称为平方损失(又称为 L2 损失)的损失函数。单个样本的平方损失如下:

 = the square of the difference between the label and the prediction
  = (observation - prediction(x))2
  = (y - y')2

均方误差 (MSE) 指的是每个样本的平均平方损失。要计算 MSE,请求出各个样本的所有平方损失之和,然后除以样本数量:



虽然 MSE 常用于机器学习,但它既不是唯一实用的损失函数,也不是适用于所有情形的最佳损失函数。

——来自Google机器学习速成课程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值