牛客小白月赛13 F题

探讨了在一个具有特殊观光缆车的景区中,如何计算从任一景点到另一景点所需的最小体力值。利用LCA算法优化路径选择,实现体力消耗最小化。

链接:https://ac.nowcoder.com/acm/contest/549/F
来源:牛客网

小A这次来到一个景区去旅游,景区里面有N个景点,景点之间有N-1条路径。小A从当前的一个景点移动到下一个景点需要消耗一点的体力值。但是景区里面有两个景点比较特殊,它们之间是可以直接坐观光缆车通过,不需要消耗体力值。而小A不想走太多的路,所以他希望你能够告诉它,从当前的位置出发到他想要去的那个地方,他最少要消耗的体力值是多少。

思路:LCA(不懂得百度)裸题

作者:西格玛象限
链接:https://ac.nowcoder.com/discuss/177449?type=101&order=0&pos=7&page=1
来源:牛客网

这张图可以认为是边权全为1的树上增加了一条边权为0的边。

首先先不考虑多出来的一条边,那么dep[u]表示点u的深度,任意两点u,v的最短的距离就是
dep[u]+dep[v]2dep[lca(u,v)],
加上这条边后另外一种可能最短的路径就是经过这条边权为0的边,可以建图之后跑一次最短路,每次查询的答案都是
min(dis[u]+dis[v],dep[u]+dep[v]2dep[lca(u,v)])#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e6 + 5;
int head[maxn], tot;
struct Edge {
    int u, v, next;
}edge[maxn];
int father[maxn], depth[maxn], size[maxn], son[maxn], top[maxn];
int L[maxn], R[maxn], Index;
void init() {
    memset(head, -1, sizeof(head));
    tot = 1;
}
 
void add(int u, int v) {
    edge[++tot].u = u; edge[tot].v = v;
    edge[tot].next = head[u];
    head[u] = tot;
}
 
void dfs1(int u, int fa) {
    size[u] = 1;
    son[u] = 0;
    father[u] = fa;
    depth[u] = depth[fa] + 1;
    int maxson = -1;
    for (int i = head[u]; i != -1; i = edge[i].next) {
        int to = edge[i].v;
        if (to == fa) {
            continue;
        }
        dfs1(to, u);
        size[u] += size[to];
        if (size[to] > maxson) {
            maxson = size[to];
            son[u] = to;
        }
    }
}
 
void dfs2(int u, int topf) {
    top[u] = topf;
    L[u] = R[u] = ++Index;
    if (son[u]) {
        dfs2(son[u], topf);
    }
    for (int i = head[u]; i != -1; i = edge[i].next) {
        int to = edge[i].v;
        if (L[to] || to == son[u]) {
            continue;
        }
        dfs2(to, to);
    }
    R[u] = Index;
}
 
int LCA(int x, int y) {
    while (top[x] != top[y]) {
        if (depth[top[x]] < depth[top[y]]) {
            swap(x, y);
        }
        x = father[top[x]];
    }
    if (depth[x] > depth[y]) {
        return y;
    }
    return x;
}
 
 
 
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    init();
    int n, m, s, u, v;
    scanf("%d", &n);
    for (int i = 1; i <= n - 1; i++) {
        scanf("%d%d", &u, &v);
        add(u, v); add(v, u);
    }
    dfs1(1, 1);
    dfs2(1, 1);
    int a, b, c;
	scanf("%d%d", &a, &b);
	int x, y;
    scanf("%d", &m);
    for (int i = 1; i <= m; i++) {
        scanf("%d%d", &x, &y);
        int L1 = LCA(x, y);
        int L2 = LCA(x, a);
        int L3 = LCA(x, b);
        int L4 = LCA(y, a);
        int L5 = LCA(y, b);
//        cout << L1 << " " << L2 << " " << L3 << " " << L4 << " " << L5 << endl;
        int x1 = depth[x] + depth[y] - 2 * depth[L1];
        int x2 = depth[x] + depth[a] - 2 * depth[L2];
        int x3 = depth[y] + depth[b] - 2 * depth[L5];
        int x4 = depth[x] + depth[b] - 2 * depth[L3];
        int x5 = depth[y] + depth[a] - 2 * depth[L4];
//        cout << x1 << " " << x2 << " " << x3 << " " << x4 << " " << x5 << endl;
        int tmp = min(x2 + x3, x4 + x5);
        printf("%d\n", min(tmp, x1));
         
    }
    return 0;
}
### 关于牛客小白109的信息 目前并未找到关于牛客小白109的具体比信息或解内容[^5]。然而,可以推测该事可能属于牛客网举办的系列算法竞之一,通常这类比会涉及数据结构、动态规划、图论等经典算法问。 如果要准备类似的事,可以通过分析其他场次的比目来提升自己的能力。例如,在牛客小白13中,有一道与二叉树相关的目,其核心在于处理树的操作以及统计最终的结果[^3]。通过研究此类问的解决方法,能够帮助理解如何高效地设计算法并优化时间复杂度。 以下是基于已有经验的一个通用解决方案框架用于应对类似场景下的批量更新操作: ```python class TreeNode: def __init__(self, id): self.id = id self.weight = 0 self.children = [] def build_tree(n): nodes = [TreeNode(i) for i in range(1, n + 1)] for node in nodes: if 2 * node.id <= n: node.children.append(nodes[2 * node.id - 1]) if 2 * node.id + 1 <= n: node.children.append(nodes[2 * node.id]) return nodes[0] def apply_operations(root, operations, m): from collections import defaultdict counts = defaultdict(int) def update_subtree(node, delta): stack = [node] while stack: current = stack.pop() current.weight += delta counts[current.weight] += 1 for child in current.children: stack.append(child) def exclude_subtree(node, total_nodes, delta): nonlocal root stack = [(root, False)] # (current_node, visited) subtree_size = set() while stack: current, visited = stack.pop() if not visited and current != node: stack.append((current, True)) for child in current.children: stack.append((child, False)) elif visited or current == node: if current != node: subtree_size.add(current.id) all_ids = {i for i in range(1, total_nodes + 1)} outside_ids = all_ids.difference(subtree_size.union({node.id})) for idx in outside_ids: nodes[idx].weight += delta counts[nodes[idx].weight] += 1 global nodes nodes = {} queue = [root] while queue: curr = queue.pop(0) nodes[curr.id] = curr for c in curr.children: queue.append(c) for operation in operations: op_type, x = operation.split(' ') x = int(x) target_node = nodes.get(x, None) if not target_node: continue if op_type == '1': update_subtree(target_node, 1) elif op_type == '2' and target_node is not None: exclude_subtree(target_node, n, 1) elif op_type == '3': path_to_root = [] temp = target_node while temp: path_to_root.append(temp) if temp.id % 2 == 0: parent_id = temp.id // 2 else: parent_id = (temp.id - 1) // 2 if parent_id >= 1: temp = nodes[parent_id] else: break for p in path_to_root: p.weight += 1 counts[p.weight] += 1 elif op_type == '4': pass # Implement similarly to other cases. result = [counts[i] for i in range(m + 1)] return result ``` 上述代码片段展示了针对特定类型的树形结构及其操作的一种实现方式。尽管它并非直接对应小白109中的具体目,但它提供了一个可借鉴的设计思路。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值