BZOJ1037生日聚会 普通DP

探讨在特定条件下,男孩与女孩就座方案的数量计算问题。通过动态规划方法求解给定人数下,满足男女数量差不超过k的所有就座方案数,并给出实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

  今天是hidadz小朋友的生日,她邀请了许多朋友来参加她的生日party。 hidadz带着朋友们来到花园中,打算
坐成一排玩游戏。为了游戏不至于无聊,就座的方案应满足如下条件:对于任意连续的一段,男孩与女孩的数目之
差不超过k。很快,小朋友便找到了一种方案坐了下来开始游戏。hidadz的好朋友Susie发现,这样的就座方案其实
是很多的,所以大家很快就找到了一种,那么到底有多少种呢?热爱数学的hidadz和她的朋友们开始思考这个问题
…… 假设参加party的人中共有n个男孩与m个女孩,你是否能解答Susie和hidadz的疑问呢?由于这个数目可能很
多,他们只想知道这个数目除以12345678的余数。

Input

  仅包含一行共3个整数,分别为男孩数目n,女孩数目m,常数k。

Output

  应包含一行,为题中要求的答案。

Sample Input

1 2 1

Sample Output

1

HINT

n , m ≤ 150,k ≤ 20。

解析:根据dp一般套路,一般题目给的输入数据就是提示状态,然后我一发猜想,f[i][j][k],有i个男生j个女生相差k时的方案,后来发现转移不了,然后重新观察发现有可能男多于女,或女多于男,这是两种不同的情况,于是f[i][j][k1][k2],然后枚举一发搞定。

# include <iostream>
# include <cstdio>
# include <cstdlib>
# include <algorithm>
# include <cmath>
# include <cstring>
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
const int mod=12345678;
int f[205][205][25][25],n,m,k;
int main()
{
    n=read(),m=read(),k=read();
    f[0][0][0][0]=1;
    for(int i=0;i<=n;++i)
        for(int j=0;j<=m;++j)
            for(int l=0;l<=min(i,k);++l)
                for(int e=0;e<=min(j,k);++e)
                {
                	if(i<n&&l<k)f[i+1][j][l+1][max(e-1,0)]+=f[i][j][l][e]%mod;
                	if(j<m&&e<k)f[i][j+1][max(l-1,0)][e+1]+=f[i][j][l][e]%mod;
                }
    long long ans=0;
    for(int i=0;i<=k;++i)
        for(int j=0;j<=k;++j) ans+=f[n][m][i][j]%mod;
    cout<<ans%mod<<endl;
            
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值