综述
TensorFlow使用张量来表示数据并且在各个节点之间进行运算
阶(Ranks)
TensorFlow系统中,张量的维数来被描述为阶。下面的张量(使用Python中list定义的)就是2阶.
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量。对于一个二阶张量你可以用语句t[i, j]
来访问其中的任何元素。而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素
表格:
阶 | 数学实例 | Python 例子 |
---|---|---|
0 | 纯量 (只有大小) | s = 483 |
1 | 向量(大小和方向) | v = [1.1, 2.2, 3.3] |
2 | 矩阵(数据表) | m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] |
3 | 3阶张量 (数据立体) | t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]] |
n | n阶 (自己想想看) | .... |
形状(shape)
一个形状的表示你可以用't[i, j, k]'来访问其中的任何元素就是张量的一个维度,一个形状的表示,比如说[[3,3]] 使用get_shape()后得到的是(2,1),也就是在以为上是两维:3,3
在二维上只有一个[3,3]
数据类型 (type)
除了维度,Tensor有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:
数据类型 | Python 类型 | 描述 |
---|---|---|
DT_FLOAT | tf.float32 | 32 位浮点数. |
DT_DOUBLE | tf.float64 | 64 位浮点数. |
DT_INT64 | tf.int64 | 64 位有符号整型. |
DT_INT32 | tf.int32 | 32 位有符号整型. |
DT_INT16 | tf.int16 | 16 位有符号整型. |
DT_INT8 | tf.int8 | 8 位有符号整型. |
DT_UINT8 | tf.uint8 | 8 位无符号整型. |
DT_STRING | tf.string | 可变长度的字节数组.每一个张量元素都是一个字节数组. |
DT_BOOL | tf.bool | 布尔型. |
DT_COMPLEX64 | tf.complex64 | 由两个32位浮点数组成的复数:实数和虚数. |
DT_QINT32 | tf.qint32 | 用于量化Ops的32位有符号整型. |
DT_QINT8 | tf.qint8 | 用于量化Ops的8位有符号整型. |
DT_QUINT8 | tf.quint8 | 用于量化Ops的8位无符号整型. |