使用阿里百炼的向量模型,向量数据库使用milivus;
#配置embedding参数,部署在本地就使用本地base_url Au:weide
CostomEmbedding=OpenAIEmbeddingFunction(model_name='text-embedding-v3', api_key='sk-xxxxxxxxxx', base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",dimensions=768)
#配置milvus http://x.x.x.x:19530,把自定义的embedding写入
Milvus_VectorStore.__init__(self, config={"embedding_function": CostomEmbedding,"milvus_client": MilvusClient(uri="http://x.x.x.x:19530")})
创建vn的完整代码:
class MyVanna(Milvus_VectorStore,QianWenAI_Chat):
def __init__(self, config=None):
#配置embedding参数,部署在本地就使用本地base_url Au:weide
CostomEmbedding=OpenAIEmbeddingFunction(model_name='text-embedding-v3', api_key='sk-xxxxxx', base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",dimensions=768)
#配置milvus http://x.x.x.x:19530
Milvus_VectorStore.__init__(self, config={"embedding_function": CostomEmbedding,"milvus_client": MilvusClient(uri="http://x.x.x.x:19530")})
# 创建 OpenAI 客户端
self.client = OpenAI(
api_key='sk-xxxxxxxxx',
base_url='https://dashscope.aliyuncs.com/compatible-mode/v1',
timeout=30
)
QianWenAI_Chat.__init__(self, config={'client': self.client, 'model': 'qwen-plus'})
logging.info("ai Initializing successfully...")
vn=MyVanna({'model':'qwen-plus'})

544

被折叠的 条评论
为什么被折叠?



