hdu 1875 序号连接并查集

探讨如何通过算法确定在百岛湖各岛屿间建造桥梁的最优方案,确保任意两岛间的连通性,同时考虑成本最优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。 
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。 
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2
2
10 10
20 20
3
1 1
2 2
1000 1000
Sample Output
1414.2
oh!

这题的是用一个结构体,存相连的序号和这两个序号相连的长度,写一个cmp,排一下从小到大,然后用一个并查集把序号连接起来,如果两个序号相连就联通了,如果没联通完(也就是num<n)就肯定是oh!.
#include <bits/stdc++.h>
//#include <ext/pb_ds/tree_policy.hpp>
//#include <ext/pb_ds/assoc_container.hpp>
//using namespace __gnu_pbds;
using namespace std;



#define pi acos(-1)
#define endl '\n'
#define me(x) memset(x,0,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
const int dx[]={-1,0,1,0,-1,-1,1,1};
const int dy[]={0,1,0,-1,1,-1,1,-1};
const int maxn=1e3+5;
const int maxx=5e4+100;
const double EPS=1e-7;
const int mod=1000000007;
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
//typedef tree<pt,null_type,less< pt >,rb_tree_tag,tree_order_statistics_node_update> rbtree;
/*lch[root] = build(L1,p-1,L2+1,L2+cnt);
    rch[root] = build(p+1,R1,L2+cnt+1,R2);中前*/
/*lch[root] = build(L1,p-1,L2,L2+cnt-1);
    rch[root] = build(p+1,R1,L2+cnt,R2-1);中后*/
long long gcd(long long a , long long b){if(b==0) return a;a%=b;return gcd(b,a);}
int _pow(LL a,LL ssss){LL ret=1;while(ssss){if(ssss&1)ret=ret*a%mod;a=a*a%mod;ssss>>=1;}return ret;}


int fa[maxn],x[maxn],y[maxn];
struct node
{
    int u,v;
    double x;
};
vector<node>Q;
int n;
int fi(int x)
{
    return fa[x]==x?x:fa[x]=fi(fa[x]);
}
bool cmp(node a,node b)
{
    return a.x<b.x;
}
int get(int x1,int x2,int y1,int y2)
{
    int xx=x1-x2;
    int yy=y1-y2;
    return xx*xx+yy*yy;
}

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        Q.clear();
        cin>>n;
        for(int i=1;i<=n;i++)
        {
            fa[i]=i;
            cin>>x[i]>>y[i];
        }
        for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++)
        {
            if(i==j) continue;
            int tmp=get(x[i],x[j],y[i],y[j]);
            if(tmp>=100&&tmp<=1000000)
            {
                Q.push_back((node){i,j,sqrt((double)tmp)});
            }
        }
        sort(Q.begin(),Q.end(),cmp);
        double ans=0;
        int num=1;
        for(int i=0;i<Q.size();i++)
        {
           // cout<<Q[i].u<<"     "<<Q[i].v<<"******"<<endl;
            int p1=fi(Q[i].u),p2=fi(Q[i].v);
           // cout<<p1<<"*******************  "<<p2<<endl;
            if(p1!=p2)
            {
                fa[p1]=p2;
                num++;
                ans+=Q[i].x;
            }
        }
       // cout<<num<<endl;
        if(num<n)
        {
            puts("oh!");
        }
        else printf("%.1lf\n",ans*100);
    }
}











### HDU 3342 并查集 解题思路与实现 #### 题目背景介绍 HDU 3342 是一道涉及并查集的数据结构题目。该类问题通常用于处理动态连通性查询,即判断若干元素是否属于同一集合,并支持高效的合并操作。 #### 数据描述 给定一系列的人际关系网络中的朋友关系对 (A, B),表示 A 和 B 是直接的朋友。目标是通过这些已知的关系推断出所有人之间的间接友谊连接情况。具体来说,如果存在一路径使得两个人可以通过中间人的链相连,则认为他们是间接朋友。 #### 思路分析 为了高效解决此类问题,可以采用带按秩压缩启发式的加权快速联合-查找算法(Weighted Quick Union with Path Compression)。这种方法不仅能够有效地管理大规模数据集下的分组信息,而且可以在几乎常数时间内完成每次查找和联合操作[^1]。 当遇到一个新的友链 `(a,b)` 时: - 如果 a 和 b 已经在同一棵树下,则无需任何动作; - 否则,执行一次 `union` 操作来把它们所在的两棵不同的树合并成一棵更大的树; 最终目的是统计有多少个独立的“朋友圈”,也就是森林里的树木数量减一即是所需新建桥梁的数量[^4]。 #### 实现细节 以下是 Python 版本的具体实现方式: ```python class DisjointSet: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) # 路径压缩 return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return # 按秩合并 if self.rank[rootP] > self.rank[rootQ]: self.parent[rootQ] = rootP elif self.rank[rootP] < self.rank[rootQ]: self.parent[rootP] = rootQ else: self.parent[rootQ] = rootP self.rank[rootP] += 1 def solve(): N, M = map(int, input().split()) dsu = DisjointSet(N+1) # 初始化不交集 for _ in range(M): u, v = map(int, input().split()) dsu.union(u,v) groups = set() for i in range(1,N+1): groups.add(dsu.find(i)) bridges_needed = len(groups)-1 print(f"Bridges needed to connect all components: {bridges_needed}") solve() ``` 这段代码定义了一个名为 `DisjointSet` 的类来进行并查集的操作,包括初始化、寻找根节点以及联合两个子集的功能。最后,在主函数 `solve()` 中读取输入参数并对每一对好友调用 `dsu.union()` 方法直到遍历完所有的边为止。之后计算不同组件的数量从而得出所需的桥接次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值