PAT A1046超时

该博客讲述了PAT A1046题目的解决方案,涉及寻找给定高速公路出口间的最短距离。初始思路导致运行超时,优化方案是存储从节点1到各节点的顺时针距离,以O(1)时间复杂度计算任意两点间的最短距离,避免了超时问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1046 Shortest Distance (20 分)

The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.

Input Specification:

Each input file contains one test case. For each case, the first line contains an integer N (in [3,10​5​​]), followed by N integer distances D​1​​ D​2​​ ⋯ D​N​​, where D​i​​ is the distance between the i-th and the (i+1)-st exits, and D​N​​ is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (≤10​4​​), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 10​7​​.

Output Specification:

For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.

Sample Input:

5 1 2 4 14 9
3
1 3
2 5
4 1

Sample Output:

3
10
7

      一开始思考的思路比较简单,无非就是用数组a保存相邻节点间的距离,然后对于m组x,y的结点的距离查询,先进行x>y情况下的交换,使x<y,之后累加x与y之间的结点距离即得到顺时针下的x-->y的距离d1,则sum-d1即为逆时针下的y-->x的距离d2,之后输出更小的一个。代码如下:

#include <stdio.h>

int main(){
    int n;
    scanf("%d",&n);
    int a[n];     //a[i]表示i+1-->i+2的距离
    int sum=0;    //组成的圆的距离和
    for(int i=0;i<n;i++){
        scanf("%d",&a[i]);
        sum+=a[i];
    }
    int m;
    scanf("%d",&m);
    int x,y;
    for(int i=0;i<m;i++){
        scanf("%d%d",&x,&y);
        if(x==y)
            printf("0");
        else{
            if(x>y){
                int temp=x;x=y;y=temp;
            }
            int d1=0;
            for(int i=x-1;i<y-1;i++)
                d1+=a[i];     
            if(d1<sum-d1)
                printf("%d",d1);
            else
                printf("%d",sum-d1);
        }
        if(i!=m-1)
            printf("\n");
    }
}

但结果是运行超时,问题在于每一组x,y都要进行x与y之间所有节点间距离的累加,因此不再使用数组a保存相邻两节点的距离,而是使用dis[]保存结点1至各节点的顺时针距离(dis[i]表示1-->i+1结点的距离),这样计算d1=dis[y-1]-dis[x-1],时间复杂度为O(1),不会出现超时的情况。代码如下:

#include <stdio.h>
int main(){
    int n;
    scanf("%d",&n);
    int dis[n+1]; //dis[i]表示1-->i+1结点的距离
    dis[0]=0; //1-->1=0
    int a;
    int sum=0;
    for(int i=0;i<n;i++){
        scanf("%d",&a);
        dis[i+1]=dis[i]+a;
        sum+=a;
    }
    int m;
    scanf("%d",&m);
    int x,y;
    for(int i=0;i<m;i++){
        scanf("%d%d",&x,&y);
        if(x>y){
                int temp=x;x=y;y=temp;
            }
        int d1=dis[y-1]-dis[x-1];
        if(d1<sum-d1)
            printf("%d",d1);
        else
            printf("%d",sum-d1);
        if(i!=m-1)
            printf("\n");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值