The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.
Input Specification:
Each input file contains one test case. For each case, the first line contains an integer N (in [3,105]), followed by N integer distances D1 D2 ⋯ DN, where Diis the distance between the i-th and the (i+1)-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (≤104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.
Output Specification:
For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.
Sample Input:
5 1 2 4 14 9
3
1 3
2 5
4 1
Sample Output:
3
10
7
我的超时代码:
题目是“一根筋”的最短路径,两个地点之间只有两条路线可供选择。但遗憾的是复杂度O(N2),造成最后一个测试超时。
#include<stdio.h>
int main()
{
int num,d[100005],sum = 0;
int x,a,b,i,j;
scanf("%d",&num);
for(i=1;i<=num;i++)
{
scanf("%d",&d[i]);
sum += d[i];
}
scanf("%d",&x);
int t;
for(i=0;i<x;i++)
{
int min = 0;
scanf("%d%d",&a,&b);
if(a>b) //此处距离没有方向,4到1和1到4的结果相同,升序方便后面操作
{
t = a;
a = b;
b = t;
}
for(j=a;j<b;j++)
min += d[j];
//一条路线是a到b,另一条是总长度-a到b,取最小
printf("%d\n",min<sum-min?min:sum-min);
}
}
我的AC代码:
将每个点到顶点①的长度dis[]存取下来,任意两点a、b之间的距离有两种情况:1.dis[b] - dis[a] 2.反方向的路线,即总长度减去情况1的长度。
#include<stdio.h>
#define maxN 100005
int main()
{
int num,d[maxN],dis[maxN],sum = 0;
int x,a,b,i,j;
scanf("%d",&num);
for(i=1;i<=num;i++)
{
scanf("%d",&d[i]);
sum += d[i];
//dis记录每个点到顶点①的距离,但不包括顶点①,所以i+1开始
dis[i+1] = sum;
}
scanf("%d",&x);
int t;
for(i=1;i<=x;i++)
{
int min = 0;
scanf("%d%d",&a,&b);
if(a>b)
{
t = a;
a = b;
b = t;
}
min = dis[b] - dis[a];
//printf("%d %d\n",min,sum-min);
printf("%d\n",min<sum-min?min:sum-min);
}
}
该博客介绍了PAT 1046题目的解决方案,题目要求在形成简单环形的高速公路上,找到任意两个出口之间的最短距离。博主首先遇到了因复杂度为O(N^2)导致的超时问题,然后优化了代码,通过存储每个点到固定点的距离,并计算两种可能的路径来求解最短距离,实现了AC(Accepted)的代码。
355

被折叠的 条评论
为什么被折叠?



