Problem Description
Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
定义一个数组sum,
sum[i]含义:所有以a[i](i=3,表示以3结尾)为结尾的序列的序列和构成一个集合,此集合的最大值就是sum[i]。
如1,2,3.所有以a[3]=3为结尾的序列的序列和集合是{6,5,3},因而sum[3]=6.
sum的状态转移方程:sum[i] = max{sum[i-1]+a[i], a[i]}
ans必定是sum[0···(k-1)]之一。由于要记录起始位置和结束位置,引入s数组记录获得sum的序列的起始元素的位置,而由sum的定义,sum[i]的结束位置是i不用另外记录。
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <iomanip>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#include <sstream>
#include <cstring>
using namespace std;
int main()
{
int t,t1;
cin>>t;
t1=0;
while(t1<t)
{
int n,ans=1;
cin>>n;
int a[n+1],sum[n+1],s[n+1]; //s保存以i结尾的最大序列的首元素位置
for(int i=1;i<=n;i++){
cin>>a[i];
}
sum[1]=a[1];
s[1]=1; //初始化
for(int i=2;i<=n;i++){
if(sum[i-1]>=0){
sum[i]=sum[i-1]+a[i];
s[i]=s[i-1];
}
else{
sum[i]=a[i];
s[i]=i;
}
if(sum[ans]<sum[i]){
ans=i;
}
}
cout<<"Case "<<t1+1<<":\n"<<sum[ans]<<" "<<s[ans]<<" "<<ans<<"\n";
t1++;
if(t1!=t)
cout<<endl;
}
return 0;
}