HDU-1003 Max Sum(经典DP)

本文介绍了一种求解整数序列中最大和子序列的算法,并提供了完整的C++实现代码。通过动态规划的方法,该算法能高效地找出序列中的最大和及其起始和终止位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output
For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5

Sample Output
Case 1:
14 1 4

Case 2:
7 1 6

定义一个数组sum,
sum[i]含义:所有以a[i](i=3,表示以3结尾)为结尾的序列的序列和构成一个集合,此集合的最大值就是sum[i]。

如1,2,3.所有以a[3]=3为结尾的序列的序列和集合是{6,5,3},因而sum[3]=6.
sum的状态转移方程:sum[i] = max{sum[i-1]+a[i], a[i]}
ans必定是sum[0···(k-1)]之一。由于要记录起始位置和结束位置,引入s数组记录获得sum的序列的起始元素的位置,而由sum的定义,sum[i]的结束位置是i不用另外记录。

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <iomanip>
#include <string>
#include <set>
#include <map>
#include <queue> 
#include <stack>
#include <vector>
#include <algorithm>
#include <sstream> 
#include <cstring>
using namespace std;

int main()
{
	int t,t1;
	cin>>t;
	t1=0;
	while(t1<t)
	{
		int n,ans=1;
		cin>>n;
		int a[n+1],sum[n+1],s[n+1];	//s保存以i结尾的最大序列的首元素位置 
		for(int i=1;i<=n;i++){
			cin>>a[i];
		}
		sum[1]=a[1];
		s[1]=1; 	//初始化 
		
		for(int i=2;i<=n;i++){
			if(sum[i-1]>=0){
				sum[i]=sum[i-1]+a[i];
				s[i]=s[i-1];
			}
			else{
				sum[i]=a[i];
				s[i]=i;
			}
			if(sum[ans]<sum[i]){
				ans=i;
			}
		}
		
		cout<<"Case "<<t1+1<<":\n"<<sum[ans]<<" "<<s[ans]<<" "<<ans<<"\n";
		t1++;
		if(t1!=t)
			cout<<endl; 
	}
	return 0;
} 
### HDU 4190 编程问题解析 针对HDU-4190这一特定编程挑战,该题目属于动态规划(DP)类问题[^3]。这类问题通常涉及寻找最优路径或者计算最优化的结果,在给定约束条件下实现目标最大化或最小化。 对于此题目的具体描述提到的是一个数塔结构,其中要求从顶部到底部移动,并且每次只能前往相邻节点,最终目的是使得所经过节点数值总和达到最大值。解决此类问题的关键在于理解如何有效地利用已知条件来构建解决方案: #### 动态规划算法设计 为了高效求解这个问题,可以采用自底向上的方法来进行动态规划处理。通过定义状态转移方程,逐步累积中间结果直至获得全局最优解。 ```python def max_sum_path(triangle): n = len(triangle) # 初始化dp数组用于存储各层的最大累加和 dp = [[0]*i for i in range(1, n+1)] # 设置起点即三角形顶端元素作为初始值 dp[0][0] = triangle[0][0] # 填充dp表 for level in range(1, n): for pos in range(level + 1): if pos == 0: dp[level][pos] = dp[level - 1][pos] + triangle[level][pos] elif pos == level: dp[level][pos] = dp[level - 1][pos - 1] + triangle[level][pos] else: dp[level][pos] = max(dp[level - 1][pos], dp[level - 1][pos - 1]) + triangle[level][pos] return max(dp[-1]) triangle = [ [2], [3, 4], [6, 5, 7], [4, 1, 8, 3] ] print(max_sum_path(triangle)) ``` 上述代码实现了基于输入参数`triangle`(表示数塔的数据结构)的函数`max_sum_path()`,它返回从顶至底所能得到的最大路径和。这里采用了二维列表形式保存每一级的最佳选择情况,从而保证能够快速访问并更新所需的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值