Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 221844 Accepted Submission(s): 52151
Problem Description
Given a sequence a[1],a[2],a[3]……a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
跟HDU-1231好像
代码
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
const int maxn=100005;
const int INF=0x3f3f3f3f;
struct node
{
int sum;
int left;
int right;
} DP[maxn];
int num[maxn];
int main()
{
int T;
scanf("%d",&T);
for(int casen=1; casen<=T; casen++)
{
int N;
scanf("%d",&N);
for(int i=1; i<=N; i++)
scanf("%d",&num[i]);
DP[1].sum=num[1];
DP[1].left=1;
DP[1].right=1;
int result=num[1];
int left=1;
int right=1;
for(int i=2; i<=N; i++)
{
if(DP[i-1].sum+num[i]>=num[i])
{
DP[i].sum=DP[i-1].sum+num[i];
DP[i].left=DP[i-1].left;
DP[i].right=i;
}
else
{
DP[i].sum=num[i];
DP[i].left=i;
DP[i].right=i;
}
if(DP[i].sum>result)
{
result=DP[i].sum;
left=DP[i].left;
right=DP[i].right;
}
}
casen==T?printf("Case %d:\n%d %d %d\n",casen,result,left,right):printf("Case %d:\n%d %d %d\n\n",casen,result,left,right);
}
return 0;
}