多项式定理 1 内容 ( x 1 + x 2 + ⋯ + x n ) k = ∑ k ! Π i = 1 n k i ! x 1 k 1 x 2 k 2 … x n k n (x_1 + x_2 + \dots + x_n)^k = \sum\frac{k!}{\Pi_{i = 1}^{n}{k_i!}} x_1^{k_1}x_2^{k_2}\dots x_n^{k_n} (x1+x2+⋯+xn)k=∑Πi=1nki!k!x1k1x2k