本文是官方例子做了一点小小的改动,基于TensorFlow实现拟合曲线,对初学TensorFlow者有一定帮助。
训练500步,每50步输出一次,并显示在plt中。
开始训练:
训练200步后:
训练完成:
以下是完整代码:
#coding: utf-8
#author: 吴晶
#wechat: 18007148050
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])) + 0.1
Wx_plus_b = tf.matmul(inputs,Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.show(block = False)
sess.run(init)
for train in range(500):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(0.1)
try:
ax.lines.remove(lines[0])
except Exception:
pass
if train % 50 == 0:
print(train,sess.run(loss,feed_dict={xs:x_data,ys:y_data}))