light oj 1122 - Digit Count(dp)

本文介绍了一道名为DigitCount的问题解决思路与DP算法实现,该问题要求从给定的一组数字中找到所有符合条件的n位数,条件是任意相邻两个数字之间的差不超过2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://lightoj.com/volume_showproblem.php?problem=1122


1122 - Digit Count
Time Limit: 2 second(s)Memory Limit: 32 MB

Given a set of digits S, and an integer n, you have to find how many n-digit integers are there, which contain digits that belong to S and the difference between any two adjacent digits is not more than two.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case contains two integers, m (1 ≤ m < 10) and n (1 ≤ n ≤ 10). The next line will contain m integers (from 1 to 9) separated by spaces. These integers form the set S as described above. These integers will be distinct and given in ascending order.

Output

For each case, print the case number and the number of valid n-digit integers in a single line.

Sample Input

Output for Sample Input

3

3 2

1 3 6

3 2

1 2 3

3 3

1 4 6

Case 1: 5

Case 2: 9

Case 3: 9

Note

For the first case the valid integers are

11

13

31

33

66


PROBLEM SETTER: JANE ALAM JAN

题意:从给出的m个数字,让你组成一个n位数,要求是任何两位之间差的绝对值不能大于2

解析:DP,dp[i][j] 是 第i位为a[j] 的方案数,dp[i][j] += dp[i-1][jj],     (abs(a[j] - a[jj]) <= 2


代码:


#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<cmath>
#include<string>
#define N 1009
using namespace std;
const int INF = 0x3f3f3f3f;

int dp[N][N], a[N];

int main()
{
    int t, m, n, cnt = 0;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d%d", &m, &n);
        for(int i = 1; i <= m; i++) scanf("%d", &a[i]);
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= m; i++) dp[1][i] = 1;
        for(int i = 2; i <= n; i++)
        {
            for(int j = 1; j <= m; j++)
            {
                for(int jj = 1; jj <= m; jj++) if(abs(a[j] - a[jj]) <= 2) dp[i][j] += dp[i - 1][jj];
            }
        }
        int ans = 0;
        for(int i = 1; i <= m; i++) ans += dp[n][i];
        printf("Case %d: %d\n", ++cnt, ans);
    }
    return 0;
}

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值