X问题
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4826 Accepted Submission(s): 1594
Problem Description
求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。
Input
输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N,数组a和b中各有M个元素。接下来两行,每行各有M个正整数,分别为a和b中的元素。
Output
对应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。
Sample Input
3 10 3 1 2 3 0 1 2 100 7 3 4 5 6 7 8 9 1 2 3 4 5 6 7 10000 10 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9
Sample Output
1 0 3
/*------------------Header Files------------------*/
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <ctype.h>
#include <cmath>
#include <stack>
#include <queue>
#include <deque>
#include <map>
#include <vector>
#include <set>
#include <limits.h>
using namespace std;
/*------------------Definitions-------------------*/
#define LL long long
#define uLL unsigned long long
#define PI acos(-1.0)
#define INF 0x3F3F3F3F
#define MOD 1000000007
#define MAX 105
#define lson rt<<1,l,m
#define rson rt<<1|1,m+1,r
/*---------------------Work-----------------------*/
LL n,N,m[15],c[15];
LL e_gcd(LL a,LL b,LL &x,LL &y)
{
if(!b)
{
x=1; y=0;
return a;
}
else
{
LL res=e_gcd(b,a%b,x,y);
LL temp=x;
x=y;
y=temp-(a/b)*y;
return res;
}
}
LL mod(LL x,LL y)
{
LL res=x%y;
if(res<=0) res+=y;
return res;
}
void work()
{
int T; cin>>T;
while(T--)
{
scanf("%I64d%I64d",&N,&n);
for(int i=1;i<=n;i++)
scanf("%I64d",m+i);
for(int i=1;i<=n;i++)
scanf("%I64d",c+i);
bool check=true;
LL ans=c[1],lcm=m[1],x,y;
if(ans==0) ans=m[1];
for(int i=2;i<=n;i++)
{
LL g=e_gcd(lcm,m[i],x,y);
if((c[i]-ans)%g)
{
check=false;
break;
}
ans=mod(ans+lcm*mod((c[i]-ans)/g*x,m[i]/g),lcm/g*m[i]);
lcm=lcm/g*m[i];
}
if(check)
{
if(N>=ans) printf("%I64d\n",(N-ans)/lcm+1);
else printf("0\n");
}
else printf("0\n");
}
}
/*------------------Main Function------------------*/
int main()
{
//freopen("test.txt","r",stdin);
work();
return 0;
}