51nod 1118 机器人走方格
动规(简单)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define E 2.71828
#define MOD 1000000007
#define N 1010
LL dp[N][N];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
if(i == j && i == 1)
dp[i][j] = 1;
else
dp[i][j] = (dp[i-1][j]+dp[i][j-1])%MOD;
}
}
printf("%lld\n",dp[n][m]);
return 0;
}
组合数
从m+n-2个不同元素中取出n-1个元素的所有组合的个数.(用到乘法逆元)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define E 2.71828
#define MOD 1000000007
#define N 200
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
LL d = exgcd(b,a%b,x,y);
LL t = x;
x = y;
y = t - a/b*y;
return d;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
LL fenzi = 1;
for(int i = m+n-2,j = 1; j <= n-1; i--,j++)
fenzi = (fenzi * i)%MOD;
for(int i = 1; i <= n-1; i++)
{
LL x, y;
exgcd(i,MOD,x,y);
x = (x % MOD + MOD)%MOD;
fenzi = (fenzi*x)%MOD;
}
printf("%lld\n",fenzi);
return 0;
}