题目链接 https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119
M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。
Input
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000000)
Output
输出走法的数量 Mod 10^9 + 7。
Sample Input
2 3
Sample Output
3
【思路】
很容易想到用dp做,设dp(i,j)表示走到第i行,第j列的方法数,那么dp(i,j)=dp(i-1,j)+dp(i,j-1),按照这个公式递推求解即可,但是这道题的数据范围很大,n,m都是1e6的级别,这样递推肯定超时。细心观察一下这个递推方程,其实和组合数C的递推式子是很相似的,C(N,M)=C(N-1,M)+C(N-1,M-1),所以我们可以先按照原来的思路打表看一看结果有什么规律
打表的程序
#include<bits/stdc++.h>
using namespace std;
const int mod=