把原式里的艾弗森约定用莫比乌斯函数展开:
f(n)=∑i=1n∑j=1i⌈ij⌉[(i,j)=1]=∑i=1n∑j=1i⌈ij⌉∑d|(i,j)μ(d)
令:
i=k1∗d,j=k2∗d,g(n)=∑i=1n⌈ij⌉,h(n)=∑i=1ng(n)
则:
f(n)=∑d=1nμ(d)∑k1=1n/d∑k2k1⌈k1k2⌉=∑d=1nμ(d)∑k1=1n/dg(k1)=∑d=1nμ(d)h(n/d)
g(n)用分块加速求出,h(n)用前缀和求出,f(n)也用分块加速求出。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e6+5;
const LL MOD = 1e9+7;
bool prime[N];
int p[N];
LL g[N], mu[N];
void init() {
for(int i = 2; i < N; i++) prime[i] = 1;
int k = 0;
mu[1] = 1;
for(int i = 2; i < N; i++) {
if(prime[i]) { p[k++] = i; mu[i] = -1;}
for(int j = 0; j<k && i*p[j]<N; j++) {
prime[i*p[j]] = 0;
if(i%p[j] == 0) { mu[i*p[j]] = 0; break; }
mu[i*p[j]] = -mu[i];
}
}
for(int i = 1; i < N-1; i++) {
g[i]++, g[i+1]--;
for(int j = 2; ; j++) {
int R = i*j, L = i*(j-1)+1;
if(R > N) R = N-2;
g[L] = (g[L]+j)%MOD; g[R+1] = (g[R+1]-j+MOD)%MOD;
if(R == N-2) break;
}
}
for(int i = 1; i < N; i++) (g[i] += g[i-1]+MOD)%=MOD;
for(int i = 1; i < N; i++) (g[i] += g[i-1]+MOD)%=MOD, (mu[i] += mu[i-1]+MOD)%=MOD;
}
int main() {
init();
int n;
while(~scanf("%d", &n)) {
LL ans = 0;
for(int i = 1; i <= n; i++) {
int j = n/(n/i);
(ans += (mu[j]-mu[i-1]+MOD)%MOD*g[n/i]%MOD)%=MOD;
i = j;
}
printf("%lld\n", ans);
}
return 0;
}