POJ 1160 DP

题目:
poj 1160

题意:

给你n个村庄和它的坐标,现在要在其中一些村庄建m个邮局,想要村庄到最近的邮局距离之和最近。

分析:
这道题。很经典的dp

dp[i][j]表示建第i个邮局,覆盖到第j个村庄的距离之和。

问题在于状态方程怎么写?

dp[i][j]=min(dp[i][j],dp[i-1][k]+dis[k+1][j]) 意思就是建了i个邮局管辖1-j个村庄,或者建i-1个邮局管辖1-k个,而后边的k+1到j个村庄在建第i个。

其中这个dis[i][j]需要预处理一下。这个dis[i][j]表示 邮局i-j之间只建一个邮局的最优距离。经事实证明,是中点位置。辣么,怎么证明哩?

可以用反证法,其中还有分成两种情况。
一. 有奇数个村庄。如果假设不在正中间,比如说往左偏一个见图

二.有偶数个村庄
那他没有严格意义上的中点,他中点的左边一个村庄和右边一个村庄是一样的
(题意&分析From mars_ch)

#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int a[1000],n,m,d[1000][1000],f[1000][1000];
int main()
{
    scanf("%d%d",&m,&n);
    for(int j=1;j<=m;j++)
        scanf("%d",&a[j]);
    memset(f,0x3f,sizeof(f));
    for(int i=1;i<=m;i++)
        for(int j=1;j<=m;j++)
            for(int k=i;k<=j;k++)
                d[i][j]+=abs(a[(i+j)/2]-a[k]);
    for(int i=0;i<=n;i++)        f[0][i]=0;
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            for(int k=1;k<=i;k++)
            f[i][j]=min(f[i][j],(f[k-1][j-1]+d[k][i]));
    printf("%d",f[m][n]);
    return 0;
}
### 关于拔河问题的动态规划实现 拔河问题是经典的 **0/1 背包变种问题**,其核心目标是将一群人分成两队,使得每队的人数最多相差 1,并且两队的体重总和尽可能接近。此问题可以通过动态规划 (Dynamic Programming, DP) 来解决。 #### 动态规划的核心思路 该问题可以转化为一个子集划分问题:给定一组重量 \( w_1, w_2, \ldots, w_n \),找到两个子集 \( A \) 和 \( B \),满足以下条件: 1. 子集 \( A \) 的权重之和与子集 \( B \) 尽可能接近。 2. 如果总人数为奇数,则其中一个子集多一个人;如果总人数为偶数,则两者人数相等。 通过定义状态转移方程来解决问题。设 \( S \) 是所有人重量的总和,\( half = S / 2 \) 表示一半的重量。我们尝试寻找不超过 \( half \) 的最大子集重量 \( sum_A \),从而另一部分的重量自然就是 \( sum_B = S - sum_A \)[^1]。 #### 实现细节 以下是基于动态规划的具体算法描述: 1. 定义数组 `dp`,其中 `dp[i]` 表示是否存在一种组合方式使其重量恰好等于 \( i \)。 2. 初始化 `dp[0] = true`,表示重量为零的情况总是可行。 3. 遍历每个人的重量 \( w_i \),更新 `dp` 数组的状态。 4. 找到最大的 \( j \leq half \) 并使 `dp[j] == true` 成立,此时 \( j \) 即为一侧的最大重量 \( sum_A \)。 下面是具体的代码实现: ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; while(cin >> n && n != 0){ vector<int> weights(n); int total_weight = 0; for(int &w : weights){ cin >> w; total_weight += w; } int half = total_weight / 2; vector<bool> dp(half + 1, false); // dp[i] means whether weight 'i' is achievable. dp[0] = true; for(auto w : weights){ for(int j = half; j >= w; --j){ if(dp[j - w]){ dp[j] = true; } } } // Find the largest possible value less than or equal to half int closest_sum = 0; for(int j = half; j >= 0; --j){ if(dp[j]){ closest_sum = j; break; } } cout << min(closest_sum, total_weight - closest_sum) << " " << max(closest_sum, total_weight - closest_sum) << endl; } } ``` 上述程序实现了如何利用动态规划求解拔河问题中的最优分配方案[^2]。 #### 常见错误分析 对于 POJ 和 UVa 上的不同表现,可能是由于输入处理上的差异所致。UVa 版本通常涉及多组测试数据,而 POJ 可能仅限单组输入。因此,在提交至 UVa 时需注意循环读取直到文件结束标志 EOF 出现为止[^3]。 另外需要注意的是边界情况以及整型溢出等问题,确保所有变量范围适当设置以容纳可能出现的最大数值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值