1、三维图像分类
三维图像是一种特殊的信息表达形式,其特征是表达的空间中三个维度的数据。和二维图像相比,三维图像借助第三个维度的信息,可以实现天然的物体-背景解耦。除此之外,对于视觉测量来说,物体的二维信息往往随射影方式而变化,但其三维特征对不同测量方式具有更好的统一性。与相片不同,三维图像时对一类信息的统称,信息还需要有具体的表现形式。其表现形式包括:深度图(以灰度表达物体与相机的距离),几何模型(由CAD软件建立),点云模型(所有逆向工程设备都将物体采样成点云)。
1、深度图像(depth image)也叫距离影像(range image),是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像。获取方法有:激光雷达深度成像法、计算机立体视觉成像、坐标测量机法、莫尔条纹法、结构光法。它直接反映了景物可见表面的几何形状。
2、三维CAD模型的几种表达方法包括:
构造型立体几何表达法:它采用布尔运算法则(并、交、减),将一些简单的三维几何基元(如立方体、圆柱体、环、 锥体)加以组合、变化成复杂的三维模型实体,这种方法的优点是,易于控制存储的信息量, 所得到的实体真实有效,并且能方便地修改它的形状。此方法的缺点是、可用于产生和修改 实体的算法有限,构成图形的计算量很大,比较费时。
边界表达法:它根据顶点、边和面构成的表面来精确地描述三维模型实体。这种方法的优点是,能快速地绘制立体或线框模型。
参数表达法、单元表达法
from:https://baike.so.com/doc/25744571-26877515.html
3、点云:当一束激光照射到物体表面时,所反射的激光会携带方位、距离等信息。若将激光束按照某种轨迹进行扫描,便会边扫描边记录到反射的激光点信息,由于扫描极为精细,则能够得到大量的激光点,因而就可形成激光点云。点云格式有*.ply ;*.pcd; *.txt等。点云的处理我们经常使用的开源库PCL,当然这里可以延伸一下,三维的CAD 文件数据也是可以填充点云形成不同角度的点云数据,这种CAD文件到点云之间的转化,经常用在binpicking,用于机械臂的抓取时,对模型点云生成各个角度的点云,以适应对不同场景中,种种姿态的匹配。
深度图与点云之间的关系:
深度图像经过坐标转换可以计算为点云数据,有规则及必要信息的点云数据也可以反算为深度图像数据。深度数据流所提供的图像帧中,每一个像素点代表的是在深度感应器的视野中,该特定的(x, y)坐标处物体到离摄像头平面最近的物体到该平面的距离。
对于深度图像主要集中在:深度图像的分割技术、深度图像的边缘检测技术、基于不同视点的多幅深度图像的配准技术、基于深度数据的三维重建技术、基于深度图像的三维目标识别技术、深度数据的多分辨率建模和几何压缩技术等等。在PCL中深度图像与点云最主要的区别在于,其近邻的检索方式不同,并且可以相互转换。
深度图像是物体的三维表示形式,一般通过立体照相机或者TOF照相机获取。如果具备照相机的内标定参数,可将深度图像转换为点云,所以以上的研究点也是点云的主要研究点。深度图转点云的计算过程主要是多视图几何的知识,其原理是根据内外参矩阵变换公式得到,from:https://blog.youkuaiyun.com/weixin_33937913/article/details/86132657
2、点云模型
可见,点云数据是最为常见也是最基础的三维模型。点云模型往往由测量直接得到,每个点对应一个测量点,未经过其他处理手段,故包含了最大的信息量。然而,这些信息隐藏在点云中需要以其他提取手段将其萃取出来,提取点云中信息的过程则为三维图像处理。
点云处理的三个层次
与图像处理类似,点云处理也存在不同层次的处理方式。或者说,根据任务的需求,需要组合不同的处理方式,而这些处理在过程上有先后之分。Marr将图像处理分为三个层次,低层次包括图像强化,滤波,边缘检测等基本操作。中层次包括连通域标记(label),图像分割等操作。高层次包括物体识别,场景分析等操作。工程中的任务往往需要用到多个层次的图像处理手段,在传统的图像处理方法中(传统就是不包括CNN神经网络和大数据集),图像处理的过程需要递增的使用不同层次图像处理来完成任务。
PCL官网对点云处理方法给出了较为明晰的层次划分,如图所示。
此处的common指的是点云数据的类型,包括XYZ,XYZC,XYZN,XYZG等很多类型点云,归根结底,最重要的信息还是包含在point<pcl::point::xyz>中。可以看出,低层次的点云处理主要包括滤波(filters),关键点(keypoints),分割(segmention)。分别对应图像处理中的滤波,边缘检测,分割。显然,在图像处理中还是中层次的分割操作,由于点云的特性被简化到了低层次的水平,本质上与滤波和关键点提取难度相当了。点云的中层次处理则是特征描述(feature)。高层次处理包括配准(registration),识别(recognition)。可见,点云在分割的难易程度上比图像处理更有优势。准确的分割也为识别打好了基础。