基于改进YOLOv5的斑马线和汽车过线行为检测

CDNet是一个基于改进YOLOv5的实时斑马线检测网络,适用于Jetson Nano设备。通过SE注意力机制、负样本训练、ROI算法和SSVM算法,实现了在复杂环境和有限计算资源下的高效检测,尤其在晴天和阴天条件下F1分数超过98%。此外,采用合成雾增强算法增强模型对雾天场景的适应性。项目提供数据集、源码和论文全文。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于改进YOLOv5的斑马线检测和汽车过线行为检测


今天带来一个基于改进YOLOv5的斑马线和汽车过线行为检测算法:CDNet,文章提出多项tricks, 数据集和复现代码开源

1 信息

标题: CDNet: A Real-Time and Robust Crosswalk Detection Network on Jetson Nano Based on YOLOv5
CDNet: 一个基于YOLOv5的在Jetson Nano上实时、鲁棒的斑马线检测网络
作者:Zheng-De Zhang, Meng-Lu Tan, Zhi-Cai Lan, Hai-Chun Liu, Ling Pei, Wen-Xian Yu
时间:Feb, 2022
期刊:Neural Computing & Applications, IF 5.6

2 摘要

图形摘要

在复杂场景和有限计算能力下实现实时、鲁棒的斑马线(人行横道)检测是当前智能交通管理系统(ITMS)的重要难点之一。有限的边缘计算能力和多云、晴天、雨天、雾天和夜间等真实复杂的场景同时对这项任务提出了挑战。本研究提出基于改进YOLOv5的人行横道检测网络(CDNet),实现车载摄像头视觉下快速准确的人行横道检测,并在Jetson nano设备上实现实时检测。强大的卷积神经网络特征提取器用于处理复杂环境,网络中嵌入了squeeze-and-excitation(SE)注意力机制模块,使用负样本训练(NST)方法提高准确率,利用感兴趣区域(ROI)算法进一步提高检测速度,提出了一种新的滑动感受野短时向量记忆(SSVM)算法来提高车辆交叉行为检测精度,使用合成雾增强算法允许模型适应有雾的场景。最后,在 Jetson nano 上以 33.1 FPS 的检测速度,我们在上述复杂场景中获得了 94.83%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值