之所以引入向量化,是因为要在代码中消除For循环。尤其是深度学习中。
z =w(transfor) * x + b w=[,,,,,,,],b=[,,,,,,,]
在非向量化中,在计算上述算式的时候:
z= 0
for i in range(n-x):
z+=w[i]*x[i]
z+=b
在向量化代码中:
import numpy as np
z = np.dot(w,t)+b
简便而且很快!
import numpy as np
import time
a=np.random.rand(1000000)
b = np.random.rand(1000000)
tic = time.time()
c = np.dot(a,b)
toc=time.time()
print(c)
print("Vector version:"+str(1000*(toc-tic))+"ms")
c=0
tic1 = time.time()
for i in range(1000000):
c= c+a[i]*b[i]
toc1 = time.time()
print(c)
print("NOT Vector version:"+str(1000*(toc-tic))+"ms")

看到了吧,速度快285倍!