Andrew Ng ------Vecorization(向量化)

之所以引入向量化,是因为要在代码中消除For循环。尤其是深度学习中。

z =w(transfor) *   x + b      w=[,,,,,,,],b=[,,,,,,,]


在非向量化中,在计算上述算式的时候:

z= 0
for i in range(n-x):
    z+=w[i]*x[i]
z+=b

在向量化代码中:

import numpy as np
z = np.dot(w,t)+b

简便而且很快!

import numpy as np
import time
a=np.random.rand(1000000)
b = np.random.rand(1000000)
tic = time.time()
c = np.dot(a,b)
toc=time.time()
print(c)
print("Vector version:"+str(1000*(toc-tic))+"ms")
c=0
tic1 = time.time()
for i in range(1000000):
    c= c+a[i]*b[i]

toc1 = time.time()
print(c)
print("NOT  Vector version:"+str(1000*(toc-tic))+"ms")


看到了吧,速度快285倍!




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值