Balanced Binary Tree平衡二叉树

本文介绍了一种高效判断二叉树是否为高度平衡的方法,采用后序遍历策略,避免了重复计算节点深度的问题。通过递归地比较每个节点左右子树的深度差,确保差值不超过1。

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

示例 1:

给定二叉树 [3,9,20,null,null,15,7]

    3
   / \
  9  20
    /  \
   15   7

返回 true 。

示例 2:

给定二叉树 [1,2,2,3,3,null,null,4,4]

       1
      / \
     2   2
    / \
   3   3
  / \
 4   4

返回 false 。

思路:

由于平衡二叉树的定义每个节点的左右子树的深度差不超过1,所以直观想法我们可以在前序遍历的同时每次调用求深度的递归代码,但是这样父节点与子节点调用的递归求深度代码有重叠,造成时间的巨大开销。所以我们想其他方法来解决。

观察到如果我们用后序遍历(左-右-根)来遍历二叉树,并且每次保存中间变量cur来记录树的深度,这样可以避免重复遍历节点,因为当访问到根节点时,他的左右子树已经被访问过了,并且记录树深度的cur已经更新,我们判断左右子树返回的cur的差是否在-1~1之间,可以作为当前节点是否平衡的依据。

   //注意传入的cur是引用,这样可以方便在子函数中修改主函数传入的cur
   bool isBalancesCore(TreeNode* root,int &cur) {
	   if (root == nullptr) {
		   //到达边界条件时做两件事,cur赋值为0,返回true
		   cur = 0;
		   return true;
	   }
	   int left, right;
	   //返回左右子树情况
	   bool left_=isBalancesCore(root->left, left);
	   bool right_=isBalancesCore(root->right, right);
	   int diff = left - right;
	   //根据左右子树返回的cur和bool类型值做综合判断
	   if (diff < -1 || diff>1 || !left_ || !right) {
		   return false;
	   }
	   //更新根节点的cur值,返回给父节点
	   cur = max(left, right) + 1;
	   return true;
   }

   bool isBalanced(TreeNode* root) {
	   if (!root) {
		   return true;
	   }
	   
	   int cur = 0;
	   return isBalancesCore(root,cur);
   }




### Height-Balanced Binary Tree 与 Self-Balanced Binary Tree 的区别 **Height-Balanced Binary Tree** 是一种二叉树,其定义为:对于树中的每个节点,其左右子树的深度之差不超过1。这种平衡性确保了树的整体高度保持在 $ O(\log n) $ 级别,从而保证了查找、插入和删除操作的时间复杂度接近最优。例如,在 LeetCode 题目中,判断一棵二叉树是否是高度平衡的通常涉及递归计算每个节点的左右子树深度,并检查它们的差异[^1]。 **Self-Balanced Binary Tree** 则是一个更广泛的概念。它不仅要求树的高度平衡,还要求在进行插入或删除操作后,树能够通过特定的旋转操作(如左旋、右旋)自动恢复平衡。常见的自平衡二叉搜索树包括 AVL 树 和 红黑树(Red-Black Tree)。AVL 树是一种特殊的高度平衡二叉搜索树,其每个节点的左子树和右子树的高度差最多为1,并且所有操作(插入、删除)都会维持这一性质;而红黑树则通过颜色规则来保证树的大致平衡,虽然它的高度可能略高于 AVL 树,但其插入和删除操作的性能更好[^3]。 #### 关键区别 1. **定义上的区别**: - Height-Balanced Binary Tree 只要求任意节点的左右子树深度差不超过1。 - Self-Balanced Binary Tree 不仅要求高度平衡,还需要支持动态操作(插入、删除)后的自动平衡维护。 2. **应用场景**: - Height-Balanced Binary Tree 通常用于静态结构或不需要频繁更新的场景。 - Self-Balanced Binary Tree 更适合需要频繁插入和删除的动态数据结构,例如数据库索引和语言标准库中的有序集合。 3. **实现机制**: - Height-Balanced Binary Tree 的实现较为简单,只需检查每个节点的子树深度差即可。 - Self-Balanced Binary Tree(如 AVL 树)则需要额外的旋转操作来维持平衡,例如 AVL 树的单旋转和双旋转[^3]。 4. **性能特性**: - 在查找操作较多的情况下,Height-Balanced Binary Tree 和 Self-Balanced Binary Tree 的性能相近。 - 在插入和删除操作较多的情况下,Self-Balanced Binary Tree(如红黑树)通常表现更好,因为它们的平衡策略减少了旋转的次数。 ### 示例代码:AVL 树的插入操作 以下是一个 AVL 树的插入操作示例,展示了如何通过旋转保持树的平衡: ```cpp struct Node { int key; Node *left; Node *right; int height; }; int height(Node *N) { if (N == NULL) return 0; return N->height; } Node* newNode(int key) { Node* node = new Node(); node->key = key; node->left = NULL; node->right = NULL; node->height = 1; return node; } Node* rightRotate(Node *y) { Node *x = y->left; Node *T2 = x->right; x->right = y; y->left = T2; y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; return x; } Node* leftRotate(Node *x) { Node *y = x->right; Node *T2 = y->left; y->left = x; x->right = T2; x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; return y; } int getBalance(Node *N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } Node* insert(Node* node, int key) { if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); else return node; node->height = 1 + max(height(node->left), height(node->right)); int balance = getBalance(node); if (balance > 1 && key < node->left->key) return rightRotate(node); if (balance < -1 && key > node->right->key) return leftRotate(node); if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } return node; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值