hdu5889 Barricade(最短路+网络流)

本文介绍了一种结合最短路径算法与网络流最小割算法的方法,用于解决敌军进攻时如何通过设置障碍物来最大化延迟敌军到达的问题。首先利用SPFA算法找到敌军可能选择的最短路径,然后构建网络流模型并求解最小割,以此确定最优障碍物放置方案及所需最少资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:先跑一次最短路,然后把最短路上的边扔进网络流跑一次最小割就好了,和HDU3416异曲同工


#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
#define inf 1e9
#define INF 1e9
const int maxm = 4000000+50;
struct Node
{
	int v,w;
	Node(int vv,int ww):v(vv),w(ww){};
};
vector<Node>e[maxn];
int s,t,n,m,vs,vt;
int d[maxn];
int vis[maxn];
void spfa()
{
	memset(vis,0,sizeof(vis));
	for(int i = 1;i<=n;i++)
		d[i]=inf;
	d[s]=0;
	queue<int>q;
	q.push(s);
    while(!q.empty())
	{
        int u = q.front();
		q.pop();
		vis[u]=0;
		for(int i = 0;i<e[u].size();i++)
		{
			int v = e[u][i].v;
			int w = e[u][i].w;
			if(d[v]>d[u]+1)
			{
				d[v]=d[u]+1;
				if(!vis[v])
					q.push(v);
				vis[v]=1;
			}
		}
	}
}


struct Edge
{
	int from,to,cap,flow;
	Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic
{
//	int n,m;
    int s,t;
	vector<Edge>edges;        //边数的两倍
	vector<int> G[maxn];      //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
	bool vis[maxn];           //BFS使用
	int d[maxn];              //从起点到i的距离
	int cur[maxn];            //当前弧下标
	void init()
	{
	   for (int i=0;i<=n+1;i++)
		   G[i].clear();
	   edges.clear();
	}
	void AddEdge(int from,int to,int cap)
	{
		edges.push_back(Edge(from,to,cap,0));
		edges.push_back(Edge(to,from,0,0));        //反向弧
		int mm=edges.size();
		G[from].push_back(mm-2);
		G[to].push_back(mm-1);
	}
	bool BFS()
	{
		memset(vis,0,sizeof(vis));
		queue<int>q;
		q.push(s);
		d[s]=0;
		vis[s]=1;
		while (!q.empty())
		{
			int x = q.front();q.pop();
			for (int i = 0;i<G[x].size();i++)
			{
				Edge &e = edges[G[x][i]];
				if (!vis[e.to] && e.cap > e.flow)
				{
					vis[e.to]=1;
					d[e.to] = d[x]+1;
					q.push(e.to);
				}
			}
		}
		return vis[t];
	}

	int DFS(int x,int a)
	{
		if (x==t || a==0)
			return a;
		int flow = 0,f;
		for(int &i=cur[x];i<G[x].size();i++)
		{
			Edge &e = edges[G[x][i]];
			if (d[x]+1 == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0)
			{
				e.flow+=f;
				edges[G[x][i]^1].flow-=f;
				flow+=f;
				a-=f;
				if (a==0)
					break;
			}
		}
		return flow;
	}

	int Maxflow(int s,int t)
	{
		this->s=s;
		this->t=t;
		int flow = 0;
		while (BFS())
		{
			memset(cur,0,sizeof(cur));
			flow+=DFS(s,INF);
		}
		return flow;
	}
}dc;

int main()
{
    int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&m);
        for(int i = 0;i<=n;i++)
			e[i].clear();
		for(int i = 1;i<=m;i++)
		{
			int u,v,di;
			scanf("%d%d%d",&u,&v,&di);
			e[u].push_back(Node(v,di));
			e[v].push_back(Node(u,di));
		}
		s=1,t=n;
		spfa();
		dc.init();
		for(int i = 1;i<=n;i++)
			for(int j = 0;j<e[i].size();j++)
				if(d[e[i][j].v]==d[i]+1)
					dc.AddEdge(i,e[i][j].v,e[i][j].w);
		printf("%d\n",dc.Maxflow(s,t));
	}
}


Problem Description
The empire is under attack again. The general of empire is planning to defend his castle. The land can be seen as N towns and M roads, and each road has the same length and connects two towns. The town numbered 1 is where general's castle is located, and the town numbered N is where the enemies are staying. The general supposes that the enemies would choose a shortest path. He knows his army is not ready to fight and he needs more time. Consequently he decides to put some barricades on some roads to slow down his enemies. Now, he asks you to find a way to set these barricades to make sure the enemies would meet at least one of them. Moreover, the barricade on the i-th road requires wi units of wood. Because of lacking resources, you need to use as less wood as possible.
 

Input
The first line of input contains an integer t, then t test cases follow.
For each test case, in the first line there are two integers N(N1000) and M(M10000).
The i-the line of the next M lines describes the i-th edge with three integers u,v and w where 0w1000 denoting an edge between u and v of barricade cost w.
 

Output
For each test cases, output the minimum wood cost.
 

Sample Input
1 4 4 1 2 1 2 4 2 3 1 3 4 3 4
 

Sample Output
4
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值