CodeForces 622D Optimal Number Permutation(构造)

本文介绍了一种构造1到n每个数出现两次的序列方法,通过特定排列使序列权值和达到最小值,权值定义为(n-i)(di+i-n),di表示第i个数两次出现的距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:构造题,让构造一个1-n中每个数出现两次的一个序列,使得这个序列的权值和最小,权值 = (n-i)(di+i-n),di是指第i个数出现两次的距离

思路:如果让di = n-i,这样权值和就是0了,分奇数偶数去摆放,这样就可以错开了,就不会重叠在一起,因为n这个数可以使得(n-i)=0,所以就用它来调整这个序列

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+7;
int a[maxn];
int d[maxn];
int main()
{
    int n;
    scanf("%d",&n);
    int tot = 1;
    for(int i=1;i<=n;i+=2)
        a[tot++]=i;
    int p = n;
    if(p%2==0)p--;
    else p-=2;
    for(int i=p;i>=1;i-=2)
    {
        a[tot++]=i;
    }
    for(int i=2;i<=n;i+=2)
        a[tot++]=i;
    p=n;
    if(p%2==1)p--;
    else p-=2;
    for(int i=p;i>=1;i-=2)
        a[tot++]=i;
    a[tot++]=n;
    for(int i=1;i<=2*n;i++)
        cout<<a[i]<<" ";
    cout<<endl;
}

Description
You have array a that contains all integers from 1 to n twice. You can arbitrary permute any numbers in a.

Let number i be in positions xi, yi (xi < yi) in the permuted array a. Let’s define the value di = yi - xi — the distance between the positions of the number i. Permute the numbers in array a to minimize the value of the sum .

Input
The only line contains integer n (1 ≤ n ≤ 5·105).

Output
Print 2n integers — the permuted array a that minimizes the value of the sum s.

Sample Input
Input
2
Output
1 1 2 2
Input
1
Output
1 1

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值