题意:一个图,每条边权值为1,其中毁坏多少个点可以使得从1到n至少要花费k+1的时间
思路:首先求一次floyd,如果从1到n原本就需要大于k的时间那么输出0即可,如果小于的话,那么就在最短路径上选择d[1][k]+d[k][n]<k的路径来添加进网络流,因为如果两点路径本来大于k的话删除也没用。因为每条边走一次那么不难想到拆点了,一个表示进,一个表示出,和平常题目一样连边,跑一遍最大流即可
吐槽:这题WA了无数次,尝试了各种姿势,最后瞎改了maxn为10010,就过了,一开始我写的是1200...可是题目写的n不是最大是50么..那么我拆点最多不也才100个点...gg...
另外做完搜了一下题解...发现这道题用网络流是有缺陷的...正解应该是迭代加深搜索..gg...
#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <set>
#include <ctime>
#include <cmath>
#include <cctype>
using namespace std;
#define maxn 10010
#define INF 1e9
#define LL long long
int cas=1,T;
struct Edge
{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
int n,m;
struct Dinic
{
// int n,m;
int s,t;
vector<Edge>edges; //边数的两倍
vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; //BFS使用
int d[maxn]; //从起点到i的距离
int cur[maxn]; //当前弧下标
void init()
{
for (int i=0;i<=2*n+1;i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0)); //反向弧
int mm=edges.size();
G[from].push_back(mm-2);
G[to].push_back(mm-1);
}
bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=0;
vis[s]=1;
while (!q.empty())
{
int x = q.front();q.pop();
for (int i = 0;i<G[x].size();i++)
{
Edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow)
{
vis[e.to]=1;
d[e.to] = d[x]+1;
q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a)
{
if (x==t || a==0)
return a;
int flow = 0,f;
for(int &i=cur[x];i<G[x].size();i++)
{
Edge &e = edges[G[x][i]];
if (d[x]+1 == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0)
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if (a==0)
break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
this->s=s;
this->t=t;
int flow = 0;
while (BFS())
{
memset(cur,0,sizeof(cur));
flow+=DFS(s,INF);
}
return flow;
}
}dc;
int d[60][60];
void floyd()
{
for (int k = 1;k<=n;k++)
for (int i = 1;i<=n;i++)
for (int j = 1;j<=n;j++)
if (d[i][k]<INF && d[k][j]<INF&&i!=j)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
int a[maxn];
int b[maxn];
int main()
{
int kk;
while (scanf("%d%d%d",&n,&m,&kk) && n+m+kk)
{
dc.init();
for (int i = 1;i<=n;i++)
for (int j = 1;j<=n;j++)
if (i!=j)
d[i][j]=INF;
else
d[i][j]=0;
for (int i = 1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
d[u][v]=1;
// dc.AddEdge(u+n,v,1);
}
int pos=0;
for (int i = 1;i<=n;i++)
{
for (int j = 1;j<=n;j++)
if (d[i][j]==1)
{
a[pos]=i;
b[pos++]=j;
}
}
floyd();
if (d[1][n]>kk)
{
printf("0\n");
continue;
}
else{
for (int i = 0;i<pos;i++)
{
if (d[1][a[i]]+d[b[i]][n] < kk)
dc.AddEdge(a[i]+n,b[i],INF);
}
for (int i = 1;i<=n;i++)
dc.AddEdge(i,i+n,1);
int ans = dc.Maxflow(n+1,n);
printf("%d\n",ans);
}
}
}