时间序列模型SCINet模型(自定义项目)

前言

  • 读完代码解析篇,我们针对开源项目中的模型预测方法做一下介绍。Github源码下载地址
  • 下载数据集ETThPEMSTrafficSplar-EnergyElectricityExchange-Rate,这几类公共数据集的任意一类就行。这里以ETTh数据集为例,先在项目文件夹下新建datasets文件夹,然后将数据集移至其中
  • 打开项目文件夹下run_ETTh.py文件,只需要检查一下数据路径、名称和csv文件就行
# 数据名称
parser.add_argument('--data', type=str, required=False, default='ETTh1', choices=['ETTh1', 'ETTh2', 'ETTm1'], help='name of dataset')
# 数据路径
parser.add_argument('--root_path', type=str, default='./datasets/', help='root path of the data file')
# 数据文件
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='location of the data file')
  • 然后跑一下,看看跑不跑的通,注意一定要是在GPU环境下,否则报错,后面的自定义项目是建立在原代码能跑通的情况下。

自定义项目

参数设定修改

  • 首先将需要预测的数据集放入datasets文件夹中,时间列列名必须为date。
  • 然后我们复制run_ETTh.py文件,并粘贴在项目文件夹下,重命名为run_power.py这个名字随便取,别和已有文件重复就行。
  • 打开run_power.py文件,修改开头库导入部分,主要是最后一句,要导入Exp_power
import argparse
import os
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
from experiments.exp_power import Exp_power
  • 修改数据载入部分,包括数据名称、路径、文件、目标预测列、采样间隔(我用的数据集是每1分钟收集一次数据,所以参数设为t
# 数据名称
parser.add_argument('--data', type=str, required=False, default='power data', choices=['ETTh1', 'ETTh2', 'ETTm1'], help='name of dataset')
# 数据路径
parser.add_argument('--root_path', type=str, default='./datasets/', help='root path of the data file')
# 文件名
parser.add_argument('--data_path', type=str, default='power data.csv', help='location of the data file')
# 多变量预测
parser.add_argument('--features', type=str, default='M', choices=['S'
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羽星_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值