MMYOLO框架标注、训练、测试全流程(补充篇)

前言

  • MMYOLO框架是一个基于PyTorchMMDetectionYOLO系列算法开源工具箱。MMYOLO定位为YOLO系列热门开源库以及工业应用核心库,MMYOLO框架Github项目地址
  • 支持的任务:目标检测、旋转目标检测
  • 支持的算法:YOLOv5YOLOXRTMDetRTMDet-RotatedYOLOv6YOLOv7PPYOLOEYOLOv8
  • 支持COCO、VOC数据格式的训练
  • 官方有一篇文章标注+训练+测试+部署全流程写的很详细,基本上纯新手也是可以走完流程的。也可以观看视频自定义数据集从标注到部署保姆级教程MMYOLO系列视频
  • 本文主要是对上述教程的一点点扩展(Win10系统),记录在使用过程中遇到的一些问题,解决过程以及对配置文件的深入解释。

pycocotools安装问题

  • 首先从MMYOLO项目地址中下载整个项目,接着在命令窗口中输入pip install openmim。然后使用cd mmyolo进入项目文件下,注意这里的mmyolo是一个路径,比如你项目文件在D盘下,那你应该写cd D:\mmyolo。进入项目文件夹后输入mim install -r requirements/mminstall.txt
  • 我在安装过程中只有一个库安装报错,就是pycocotools库,报错Microsoft Visual C++ 14.0 or greater is required,对应Github库中作者强调了该错误信息是没有安装Visual C++ 2015 build tools,在文档中作者提供了一个下载地址,但是下载过程中总是报错。于是我找到了离线版本,下载链接
  • 安装完成后,再次尝试mim install -r requirements/mminstall.txt无报错,问题解决!

xml文件path问题

  • 因为标定的时候是两个人分开标的,导致xml文件中的path路径不一致,但不是每个人都有这样的问题,这里仅是做一点记录。
import xml.etree.ElementTree as ET
import os
def modify_xml_path(xml_file):
    tree = ET.parse(xml_file)
    root = tree.getroot()

    for path_elem in root.iter('path'):
        path_elem.text = os.path.basename(path_elem.text)

    tree.write(xml_file)

folder_path = './data/xml'

for file in os.listdir(folder_path):
        file_path = os.path.join(folder_path, file)
        modify_xml_path(file_path)

xml文件转json文件

  • 因为之前做数据标定的时候没看过MMYOLO教程文档,所以使用Labelimg软件标定的,VOC格式,生成xml文件。
  • 但是教程中使用的是Labelme,生成的json文件,并且后续的数据分隔、标注检验、数据集探索等等都是基于json文件,所以需要将xml文件转换为json文件。
  • 先将文件按下列方式组织:
-mmyolo
	- data
		- images
			- 0001.bmp
			- 0002.bmp
			- ...
		- xml
			- 0001.xml
			- 0002.xml
			- ...
	 - configs
	 ...
  • mmyolo项目文件夹下新建data文件夹,将图片放入.\data\images中,标定文件放入.\data\xml中。
  • 然后在.\tools\dataset_converters文件夹中新建xml2json.py文件,填入代码:
import xml.etree.ElementTree as ET
import os
import json

coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []

category_set = dict()
image_set = set()

category_item_id = -1
image_id = 0
annotation_id = 0


def addCatItem(name):
    global category_item_id
    category_item = dict()
    category_item['supercategory'] = 'none'
    category_item_id += 1
    category_item['id'] = category_item_id
    category_item['name'] = name
    coco['categories'].append(category_item)
    category_set[name] = category_item_id
    return category_item_id


def addImgItem(file_name, size):
    global image_id
    if file_name is None:
        raise Exception('Could not find filename tag in xml file.')
    if size['width'] is None:
        raise Exception('Could not find width tag in xml file.')
    if size['height'] is None:
        raise Exception('Could not find height tag in xml file.')
    image_id += 1
    image_item = dict()
    image_item['id'] = image_id
    print(file_name)
    image_item['file_name'] = file_name + ".jpg"
    image_item['width'] = size['width']
    image_item['height'] = size['height']
    coco['images'].append(image_item)
    image_set.add(file_name)
    return image_id


def addAnnoItem(object_name, image_id, category_id, bbox):
    global annotation_id
    annotation_item = dict()
    annotation_item['segmentation'] = []
    seg = []
    # bbox[] is x,y,w,h
    # left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    # left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    # right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    # right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])

    annotation_item['segmentation'].append(seg)

    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['ignore'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_id += 1
    annotation_item['id'] = annotation_id
    coco['annotations'].append(annotation_item)


def parseXmlFiles(xml_path):
    for f in os.listdir(xml_path):
        if not f.endswith('.xml'):
            continue
        xmlname = f.split('.xml')[0]

        bndbox = dict()
        size = dict()
        current_image_id = None
        current_category_id = None
        file_name = None
        size['width'] = None
        size['height'] = None
        size['depth'] = None

        xml_file = os.path.join(xml_path, f)
        print(xml_file)

        tree = ET.parse(xml_file)
        root = tree.getroot()
        if root.tag != 'annotation':
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))

        # elem is <folder>, <filename>, <size>, <object>
        for elem in root:
            current_parent = elem.tag
            current_sub = None
            object_name = None

            if elem.tag == 'folder':
                continue

            if elem.tag == 'filename':
                file_name = xmlname
                if file_name in category_set:
                    raise Exception('file_name duplicated')

            # add img item only after parse <size> tag
            elif current_image_id is None and file_name is not None and size['width'] is not None:
                if file_name not in image_set:
                    current_image_id = addImgItem(file_name, size)
                    print('add image with {} and {}'.format(file_name, size))
                else:

                    raise Exception('duplicated image: {}'.format(file_name))

                    # subelem is <width>, <height>, <depth>, <name>, <bndbox>
            for subelem in elem:
                bndbox['xmin'] = None
                bndbox['xmax'] = None
                bndbox['ymin'] = None
                bndbox['ymax'] = None

                current_sub = subelem.tag
                if current_parent == 'object' and subelem
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羽星_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值