简单双向LSTM模型实战项目

本文详细介绍了如何在Kaggle的VentilatorPressurePrediction比赛中构建一个基于LSTM的模型。首先,通过数据内存优化减少数据占用空间,然后进行数据可视化和最大最小归一化。接着,定义了LSTM模型结构,并使用早停策略进行训练,同时利用Tensorboard进行训练过程的可视化。最后,进行了交叉验证和模型预测,展示了模型的预测效果。

前言

  • 数据来自于kaggle比赛Ventilator Pressure Prediction,数据背景介绍请看官方说明
  • 代码来自于当前排名第一的团队Shujun, Kha, Zidmie, Gilles, B,他们在获得第一名的成绩以后发了一篇博客,提供了他们在比赛中使用的模型,包括LSTM CNN transformerPID Controller MatchingSimple LSTM
  • 该篇博客主要对Simple LSTM做解读,代码写的非常好,包含了一个完整的解决方案、从数据准备、可视化、模型搭建、交叉检验、测试、提交测试文件。
  • 我针对该代码可能缺失的功能做了一定补充,比如数据内存优化、利用tensorboard可视化训练过程、早停功能、数据最大最小归一化。

数据特征说明

  • id:整个文件中全局唯一的时间步长标识符
  • breath_id :全局唯一的呼吸时间步骤
  • R:肺部气道受限程度(单位: c m H 2 O / L / S cm H_2O/L/S cmH2O/L/S)。在物理学上,每一次的空气量的压力变化。我们可以想象通过吸管吹起一个气球。我们可以通过改变吸管的直径来改变 R R R R R R越高就越难吹。
  • C:肺部顺应性程度(单位: m L / c m H 2 O mL/cm H_2O mL/cmH2O)。从物理上讲,每一个压力变化所带来的体积变化。直观地说,我们可以想象同一个气球的例子。我们可以通过改变气球乳胶的厚度来改变C,C越高,乳胶越薄,越容易吹。
  • time_step:实际时间戳
  • u_in:吸气式电磁阀的控制输入,范围从0到100。
  • u_out:探索性电磁阀的控制输入,取值为0或1。
  • pressure:呼吸回路中测量的气道压力,单位为 c m H 2 O cm H_2O cmH2O

代码解析

导入必要包

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from tqdm.notebook import tqdm
from collections import Counter

import optuna
from IPython.display import display

from sklearn.metrics import mean_absolute_error as mae
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split, GroupKFold
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import Dataset
from torchvision import datasets
from torch.utils.data import DataLoader
from transformers import get_linear_schedule_with_warmup

import gc
import os
import time
import warnings
import random
warnings.filterwarnings("ignore")

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('/kaggle/working/runs_info/')

数据可视化及准备

数据内存优化

  • 通过更改数据默认数据格式,尽可能选择小的满足精度要求的数据类型,这样可以减小数据占用空间
def read_csv(file_name):
    return pd.read_csv(file_name, encoding='utf-8')

def reduce_mem_usage(df, verbose=True):
    start_mem = df.memory_usage().sum() / 1024**2
    numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']

    for col in df.columns:
        col_type = df[col].dtypes
        if col_type in numerics:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
                    
    end_mem = df.memory_usage().sum() / 1024**2
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    return df
train_file = '../input/ventilator-pressure-prediction/train.csv'
test_file = '../input/ventilator-pressure-prediction/test.csv'

train_data = reduce_mem_usage(read_csv(train_file))
test_data = reduce_mem_usage(read_csv(test_file))
df = train_data[train_data['breath_id'] < 5].reset_index(drop=True)

输出:

Memory usage after optimization is: 97.86 MB
Decreased by 73.4%
Memory usage after optimization is: 57.56 MB
Decreased by 73.2%

可视化数据

  • 定义可视化函数,各呼吸步骤的pressure变化趋势
def plot_sample(sample_id, df):
    df_breath = df[df['breath_id'] == sample_id]
    r, c  = df_breath[['R', 'C']].values[0]

    cols = ['u_in', 'u_out', 'pressure'] if 'pressure' in df.columns else ['u_in', 'u_out']
    
    plt.figure(figsize=
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羽星_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值