柱状图中最大的矩形

本文详细解析了求解柱状图中最大矩形面积的算法。通过使用栈来跟踪柱子高度,算法能高效地找出能构成最大面积矩形的柱子组合,给出实例并附带代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述:

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。
在这里插入图片描述
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。
在这里插入图片描述
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。

示例:

输入: [2,1,5,6,2,3]
输出: 10

链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram

代码实现:
public class Solution {
    public int largestRectangleArea(int[] heights) {
        Stack < Integer > stack = new Stack < > ();
        stack.push(-1);
        int maxarea = 0;
        for (int i = 0; i < heights.length; ++i) {
            while (stack.peek() != -1 && heights[stack.peek()] >= heights[i])
                maxarea = Math.max(maxarea, heights[stack.pop()] * (i - stack.peek() - 1));
            stack.push(i);
        }
        while (stack.peek() != -1)
            maxarea = Math.max(maxarea, heights[stack.pop()] * (heights.length - stack.peek() -1));
        return maxarea;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值