描述:
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
示例:
输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
链接:https://leetcode-cn.com/problems/sliding-window-maximum
思路分析:
初始状态:L=R=0,队列:{}
i=0,nums[0]=1。队列为空,直接加入。队列:{1}
i=1,nums[1]=3。队尾值为1,3>1,弹出队尾值,加入3。队列:{3}
i=2,nums[2]=-1。队尾值为3,-1<3,直接加入。队列:{3,-1}。此时窗口已经形成,L=0,R=2,result=[3]
i=3,nums[3]=-3。队尾值为-1,-3<-1,直接加入。队列:{3,-1,-3}。队首3对应的下标为1,L=1,R=3,有效。result=[3,3]
i=4,nums[4]=5。队尾值为-3,5>-3,依次弹出后加入。队列:{5}。此时L=2,R=4,有效。result=[3,3,5]
i=5,nums[5]=3。队尾值为5,3<5,直接加入。队列:{5,3}。此时L=3,R=5,有效。result=[3,3,5,5]
i=6,nums[6]=6。队尾值为3,6>3,依次弹出后加入。队列:{6}。此时L=4,R=6,有效。result=[3,3,5,5,6]
i=7,nums[7]=7。队尾值为6,7>6,弹出队尾值后加入。队列:{7}。此时L=5,R=7,有效。result=[3,3,5,5,6,7]
通过示例发现R=i,L=k-R。由于队列中的值是从大到小排序的,所以每次窗口变动时,只需要判断队首的值是否还在窗口中就行了。
解释一下为什么队列中要存放数组下标的值而不是直接存储数值,因为要判断队首的值是否在窗口范围内,由数组下标取值很方便,而由值取数组下标不是很方便。
作者:hanyuhuang
链接:https://leetcode-cn.com/problems/sliding-window-maximum/solution/shuang-xiang-dui-lie-jie-jue-hua-dong-chuang-kou-2/
代码实现:
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums == null || nums.length == 0) return nums;
int len = nums.length;
int[] ans = new int[len - k + 1];
LinkedList<Integer> queue = new LinkedList<>();
for (int i = 0; i < len; i++) {
while (!queue.isEmpty() && nums[queue.peekLast()] <= nums[i]) {
queue.pollLast();
}
queue.offer(i);
if (queue.peek() <= i - k) {
queue.poll();
}
if (i - k + 1 >= 0) {
ans[i - k + 1] = nums[queue.peek()];
}
}
return ans;
}
}