To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 44665 | Accepted: 23659 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
Source
题意:求最大的子矩阵的和;
思路:首先就是用一种很笨的办法做的,就是说先算出矩阵中各个点到(1,1)的构成矩形的和,然后用枚举法,枚举法表示起点到终点的的所有和,,找到最大的;
sum[i][j] = sum[i-1][j]+sum[i][j-1] - sum[i-1][j-1]+ gra[i][j];表示矩阵中各个点到(1,1)构成的矩阵和,用sum[k][s] - sum[k-i][s]-sum[k][s-j] + sum[k-i][s-j])表示起点到终点构成的矩阵和;
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int gra[200][200];
int sum[200][200];
int n;
int main() {
scanf("%d",&n);
memset(sum,0,sizeof(sum));
int d = 0;
int m = 0;
for(int i = 1; i <= n ; i++) {
sum[1][i] = d + gra[1][i];
d = sum[1][i];
}
d = 0;
for(int i = 1; i <= n ; i++) {
sum[i][1] = d + gra[i][1];
d = sum[i][1];
}
for(int i = 1; i <= n ; i++) {
for(int j = 1; j <= n; j++) {
sum[i][j] = sum[i-1][j]+sum[i][j-1] - sum[i-1][j-1]+ gra[i][j];
m = max(sum[i][j],m);
}
}
for(int i = 1; i <= n ; i++) {
for(int j = 1; j <= n; j++) {
for(int k = i; k <= n; k++) {
for(int s = j; s <= n; s++) {
m = max((sum[k][s] - sum[k-i][s]-sum[k][s-j] + sum[k-i][s-j]),m);
}
}
}
}
printf("%d\n",m);
return 0;
}
写的好烦的代码,时间复杂度也高,并且感觉到思路自己也想不通,下面介绍较为简洁的代码,思路就是上升子序列的求法,把每一列的和都加起来写到最下面一行上,然后枚举起始行标和终了行标,在枚举列标,用sum[k][j] - sum[i][j];表示列构成的和,然后形成的序列求连续上升子序列的和的办法
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int sum[200][200];
int n,m;
int main() {
memset(sum,0,sizeof(sum));
scanf("%d",&n);
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
scanf("%d",&sum[i][j]);
sum[i][j] += sum[i-1][j];
}
}
int m = -2222;
for(int i = 1; i <= n; i++) {
for(int k = i; k <= n; k++) {
int d = 0;
int s = -2222;
for(int j = 1; j <= n; j++) {
d += sum[k][j] - sum[i][j];
s = max(d,s);
if(d < 0){
d = 0;
}
}
m = max(m,s);
}
}
printf("%d\n",m);
return 0;
}
现在感觉还是不能很好地做题的感觉,不过比以前好多了,不懂得还可以问问别人,每个人都一定要向阳生长的,相信自己,加油哦!