Stanford ML - Lecture 4 - Neural Networks: Representation

本文介绍了引入非线性假设的原因,探讨了神经网络的发展历程及其在高维数据处理中的作用。文章还详细解释了神经元模型及激活函数,并通过实例展示了神经网络如何实现AND、OR及XNOR等逻辑函数,最后讨论了多分类问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Non-linear hypotheses

  • why introduce non-linear hypotheses?
    • high dimensional data
    • non-linear hypotheses

2. Neurons and the brain

  • Neural networks
    • origins: algorithms that try to mimic the brain
    • was very widely used in 80s and early 90s, popularity diminished in late 90s
    • recent resurgence: state-of-the-art technique for many applications

3. Model representation I

  • neuron model: logistic unit
  • sigmoid (logistic) activation function







4. Model representation II

  • forward propagation: vectorized implementation






5. Examples and intuitions I

AND and OR function

6. Examples and intuitions II

XNOR

7. Multi-class classification

number of classes = number of output units


Reference: http://blog.youkuaiyun.com/abcjennifer/article/details/7749309#reply

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值