Machine Learning week 4 quiz: Neural Networks: Representation

本文探讨了神经网络的基本表示法,包括二层神经网络的功能、隐藏层单元激活值范围、多分类问题的输出特性等关键概念,并通过具体实例解析了神经网络的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Neural Networks: Representation

5 试题

1. 

Which of the following statements are true? Check all that apply.

A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.

The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).

Suppose you have a multi-class classification problem with three classes, trained with a 3 layer network. Let a(3)1=(hΘ(x))1 be the activation of the first output unit, and similarly a(3)2=(hΘ(x))2 and a(3)3=(hΘ(x))3. Then for any input x, it must be the case that a(3)1+a(3)2+a(3)3=1.

Any logical function over binary-valued (0 or 1) inputs x1 and x2 can be (approximately) represented using some neural network.

2. 

Consider the following neural network which takes two binary-valued inputs x1,x2{0,1} and outputs hΘ(x). Which of the following logical functions does it (approximately) compute?

OR

AND

NAND (meaning "NOT AND")

XOR (exclusive OR)

3. 

Consider the neural network given below. Which of the following equations correctly computes the activation a(3)1? Note: g(z) is the sigmoid activation function.

a(3)1=g(Θ(2)1,0a(2)0+Θ(2)1,1a(2)1+Θ(2)1,2a(2)2)

a(3)1=g(Θ(2)1,0a(1)0+Θ(2)1,1a(1)1+Θ(2)1,2a(1)2)

a(3)1=g(Θ(1)1,0a(2)0+Θ(1)1,1a(2)1+Θ(1)1,2a(2)2)

a(3)1=g(Θ(2)2,0a(2)0+Θ(2)2,1a(2)1+Θ(2)2,2a(2)2)

4. 

You have the following neural network:

You'd like to compute the activations of the hidden layer a(2)R3. One way to do so is the following Octave code:

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute a(2)? Check all that apply.

z = Theta1 * x; a2 = sigmoid (z);

a2 = sigmoid (x * Theta1);

a2 = sigmoid (Theta2 * x);

z = sigmoid(x); a2 = sigmoid (Theta1 * z);

5. 

You are using the neural network pictured below and have learned the parameters Θ(1)=[111.55.13.72.3] (used to compute a(2)) and Θ(2)=[10.60.8] (used to compute a(3)} as a function of a(2)). Suppose you swap the parameters for the first hidden layer between its two units so Θ(1)=[115.11.52.33.7] and also swap the output layer so Θ(2)=[10.80.6]. How will this change the value of the output hΘ(x)?

It will stay the same.

It will increase.

It will decrease

Insufficient information to tell: it may increase or decrease.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值