- 博客(37)
- 资源 (14)
- 收藏
- 关注

翻译 Machine Learning with Scikit-Learn and Tensorflow 7 集成学习和随机森林(章节目录)
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-07 21:36:42
2102

翻译 Machine Learning with Scikit-Learn and Tensorflow 6 决策树(章节目录)
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-01 22:41:09
4196
原创 任务7 手写数字识别
import torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transformsdevice = torch.device("cpu")# Hyper-parameters input_size = 784hidden_size = 500num_classes = 10...
2019-08-20 09:00:09
328
原创 任务6 Pytorch理解更多神经网络优化方法
SGDimport torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transforms# Hyper-parameters input_size = 784hidden_size = 500num_classes = 10num_epochs = 5batch_si...
2019-08-18 15:56:57
346
原创 任务5 PyTorch实现L1、L2正则化及Dropout
L1正则化import torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transforms# Hyper-parameters input_size = 784hidden_size = 500num_classes = 10num_epochs = 5batch_si...
2019-08-15 15:42:15
578
原创 任务4 用PyTorch实现多层网络
```pythonimport torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transformsdevice = torch.device("cpu")# Hyper-parametersinput_size = 784hidden_size = 500num_cl...
2019-08-13 20:26:13
279
原创 任务3 PyTorch实现Logistic Regression
import torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transforms# Hyper-parameters input_size = 784num_classes = 10num_epochs = 5batch_size = 100learning_rate =...
2019-08-11 15:51:57
320
原创 任务2 设计计算图并自动计算
pytorch线性回归import torchimport torch.nn as nnimport numpy as npimport matplotlib.pyplot as plt# Hyper-parametersinput_size = 1output_size = 1num_epochs = 60learning_rate = 0.001# Toy datas...
2019-08-09 12:52:58
186
原创 任务1 Pytorch的基本概念
1、什么是Pytorch,为什么选择Pytroch?深度学习框架2、Pytroch的安装conda install pytorch-cpu torchvision-cpu -c pytorch3.配置Python环境Anaconda4.准备Python管理器Anaconda5.通过命令行安装PyTorchconda install pytorch-cpu torch...
2019-08-07 11:36:23
167
转载 numpy基础练习100题(71-100)
numpy基础练习100题(71-100) github项目地址:https://github.com/rougier/numpy-100
2017-10-01 19:50:22
1176
转载 numpy基础练习100题(41-70)
numpy基础练习100题(41-70) github项目地址:https://github.com/rougier/numpy-100
2017-10-01 19:46:20
1913
转载 numpy基础练习100题(01-40)
numpy基础练习100题(01-40) github项目地址:https://github.com/rougier/numpy-100
2017-09-18 16:36:43
1943
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.11 练习
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-07 21:11:11
539
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.10 Stacking
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-07 20:54:47
794
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.9 Gradient Boosting
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-06 23:05:00
1077
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.8 AdaBoost
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-06 16:18:33
2020
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.7 特征重要程度
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-06 15:22:37
692
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.6 Extra-Trees
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-06 11:46:39
942
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.5 随机森林
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-06 11:26:55
3363
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.4 Random Patches和Random Subspaces
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-06 10:05:50
1013
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.3 Out-of-Bag评价方式
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-06 10:03:47
1253
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.2 Bagging和Pasting
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-05 22:16:42
1270
翻译 Machine Learning with Scikit-Learn and Tensorflow 7.1 Voting Classifiers
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-05 20:59:51
945
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.10 练习
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-01 15:09:39
744
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.9 决策树局限性
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-01 11:37:06
1654
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.8 决策树回归
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-01 09:44:23
2183
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.7 正则化超参数
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-04-01 08:53:12
808
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.6 基尼不纯度/熵
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-03-31 22:40:12
869
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.5 计算复杂度
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-03-31 21:43:37
2364
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.4 CART算法
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-03-31 21:15:08
904
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.3 预测类别概率
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-03-30 22:55:06
1251
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.2 进行预测
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-03-30 22:27:39
1083
翻译 Machine Learning with Scikit-Learn and Tensorflow 6.1 决策树的训练与可视化
Hands-On Machine Learning with Scikit-Learn and Tensorflow
2017-03-30 20:53:48
5467
原创 matplotlib绘制决策边界
在进行分类模型的可视化时,我们希望能够绘制分类模型的决策边界。绘制决策边界的直观思路是在空间内足够密集地取点,使用分类模型针对这些点进行预测,并将这些点的预测结果可视化。
2017-03-24 23:24:06
7125
原创 python机器学习模型选择&调参工具Hyperopt-sklearn(1)——综述&分类问题
针对特定的数据集选择合适的机器学习算法是冗长的过程,即使是针对特定的机器学习算法,亦需要花费大量时间和精力调整参数,才能让模型获得好的效果,Hyperopt-sklearn可以辅助解决这样的问题。
2017-03-23 15:46:38
8175
4
nachos Lab8实习报告
2017-01-16
nachos Lab7实习报告
2017-01-16
nachos Lab6实习报告
2017-01-16
nachos Lab4实习报告
2017-01-16
nachos Lab3实习报告
2017-01-16
nachos Lab1实习报告
2017-01-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人