自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(37)
  • 资源 (14)
  • 收藏
  • 关注

翻译 Machine Learning with Scikit-Learn and Tensorflow 7 集成学习和随机森林(章节目录)

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-07 21:36:42 2102

翻译 Machine Learning with Scikit-Learn and Tensorflow 6 决策树(章节目录)

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-01 22:41:09 4196

原创 任务7 手写数字识别

import torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transformsdevice = torch.device("cpu")# Hyper-parameters input_size = 784hidden_size = 500num_classes = 10...

2019-08-20 09:00:09 328

原创 任务6 Pytorch理解更多神经网络优化方法

SGDimport torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transforms# Hyper-parameters input_size = 784hidden_size = 500num_classes = 10num_epochs = 5batch_si...

2019-08-18 15:56:57 346

原创 任务5 PyTorch实现L1、L2正则化及Dropout

L1正则化import torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transforms# Hyper-parameters input_size = 784hidden_size = 500num_classes = 10num_epochs = 5batch_si...

2019-08-15 15:42:15 578

原创 任务4 用PyTorch实现多层网络

```pythonimport torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transformsdevice = torch.device("cpu")# Hyper-parametersinput_size = 784hidden_size = 500num_cl...

2019-08-13 20:26:13 279

原创 任务3 PyTorch实现Logistic Regression

import torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transforms# Hyper-parameters input_size = 784num_classes = 10num_epochs = 5batch_size = 100learning_rate =...

2019-08-11 15:51:57 320

原创 任务2 设计计算图并自动计算

pytorch线性回归import torchimport torch.nn as nnimport numpy as npimport matplotlib.pyplot as plt# Hyper-parametersinput_size = 1output_size = 1num_epochs = 60learning_rate = 0.001# Toy datas...

2019-08-09 12:52:58 186

原创 任务1 Pytorch的基本概念

1、什么是Pytorch,为什么选择Pytroch?深度学习框架2、Pytroch的安装conda install pytorch-cpu torchvision-cpu -c pytorch3.配置Python环境Anaconda4.准备Python管理器Anaconda5.通过命令行安装PyTorchconda install pytorch-cpu torch...

2019-08-07 11:36:23 167

原创 Notepad++拼写检查插件DSpellCheck

废了不少力气顺利实现了Notepad++的自动拼写检查,与大家分享我的方法。

2017-10-07 14:53:49 4680 3

转载 numpy基础练习100题(71-100)

numpy基础练习100题(71-100) github项目地址:https://github.com/rougier/numpy-100

2017-10-01 19:50:22 1176

转载 numpy基础练习100题(41-70)

numpy基础练习100题(41-70) github项目地址:https://github.com/rougier/numpy-100

2017-10-01 19:46:20 1913

转载 numpy基础练习100题(01-40)

numpy基础练习100题(01-40) github项目地址:https://github.com/rougier/numpy-100

2017-09-18 16:36:43 1943

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.11 练习

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-07 21:11:11 539

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.10 Stacking

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-07 20:54:47 794

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.9 Gradient Boosting

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-06 23:05:00 1077

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.8 AdaBoost

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-06 16:18:33 2020

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.7 特征重要程度

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-06 15:22:37 692

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.6 Extra-Trees

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-06 11:46:39 942

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.5 随机森林

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-06 11:26:55 3363

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.4 Random Patches和Random Subspaces

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-06 10:05:50 1013

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.3 Out-of-Bag评价方式

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-06 10:03:47 1253

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.2 Bagging和Pasting

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-05 22:16:42 1270

翻译 Machine Learning with Scikit-Learn and Tensorflow 7.1 Voting Classifiers

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-05 20:59:51 945

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.10 练习

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-01 15:09:39 744

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.9 决策树局限性

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-01 11:37:06 1654

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.8 决策树回归

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-01 09:44:23 2183

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.7 正则化超参数

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-04-01 08:53:12 808

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.6 基尼不纯度/熵

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-03-31 22:40:12 869

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.5 计算复杂度

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-03-31 21:43:37 2364

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.4 CART算法

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-03-31 21:15:08 904

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.3 预测类别概率

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-03-30 22:55:06 1251

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.2 进行预测

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-03-30 22:27:39 1083

翻译 Machine Learning with Scikit-Learn and Tensorflow 6.1 决策树的训练与可视化

Hands-On Machine Learning with Scikit-Learn and Tensorflow

2017-03-30 20:53:48 5467

原创 scikit-learn分类问题入门实例(1)

本文以scikit-learn自身的digits数据集为例,阐释分类问题

2017-03-25 22:35:49 618

原创 matplotlib绘制决策边界

在进行分类模型的可视化时,我们希望能够绘制分类模型的决策边界。绘制决策边界的直观思路是在空间内足够密集地取点,使用分类模型针对这些点进行预测,并将这些点的预测结果可视化。

2017-03-24 23:24:06 7125

原创 python机器学习模型选择&调参工具Hyperopt-sklearn(1)——综述&分类问题

针对特定的数据集选择合适的机器学习算法是冗长的过程,即使是针对特定的机器学习算法,亦需要花费大量时间和精力调整参数,才能让模型获得好的效果,Hyperopt-sklearn可以辅助解决这样的问题。

2017-03-23 15:46:38 8175 4

nachos Lab8实习报告.pdf

北京大学2015-2016第二学期操作系统实习Lab8通信机制详细实习报告

2017-01-18

nachos Lab7实习报告.pdf

北京大学2015-2016第二学期操作系统实习Lab7shell实现详细实习报告

2017-01-18

nachos Lab6实习报告.pdf

北京大学2015-2016第二学期操作系统实习Lab6系统调用详细实习报告

2017-01-18

nachos Lab4实习报告.pdf

北京大学2015-2016第二学期操作系统实习Lab3虚拟内存详细实习报告

2017-01-18

nachos Lab3实习报告.pdf

北京大学2015-2016第二学期操作系统实习Lab3同步机制详细实习报告

2017-01-16

nachos Lab2实习报告.pdf

北京大学2015-2016第二学期操作系统实习Lab2线程调度详细实习报告

2017-01-16

nachos Lab1实习报告.pdf

北京大学2015-2016第二学期操作系统实习Lab1线程机制详细实习报告

2017-01-16

nachos Lab8实习报告

2017-01-16

nachos Lab7实习报告

2017-01-16

nachos Lab6实习报告

2017-01-16

nachos Lab4实习报告

2017-01-16

nachos Lab3实习报告

2017-01-16

nachos Lab1实习报告

2017-01-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除