任务5 PyTorch实现L1、L2正则化及Dropout

本文介绍了如何在PyTorch中实现L1和L2正则化,以及Dropout技术的应用,帮助提升神经网络的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

L1正则化

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

# Hyper-parameters 
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.0001
l1_reg = 0.001

# MNIST dataset 
train_dataset = torchvision.datasets.MNIST(root='data/', 
                                           train=True, 
                                           transform=transforms.ToTensor(),  
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='data/', 
                                          train=False, 
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                          batch_size=batch_size, 
                                          shuffle=False)

# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Sequential(nn.Linear(input_size, hidden_size),
                                 nn.ReLU())
        self.fc2 = nn.Linear(hidden_size, num_classes)
    
    def forward(self, x):
        out = self.fc1(x)
        out = self.fc2(out)
        return out

model = NeuralNet(input_size, hidden_size, num_classes)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=l2_reg)  

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值