Machine Learning with Scikit-Learn and Tensorflow 6.4 CART算法

书籍信息
Hands-On Machine Learning with Scikit-Learn and Tensorflow
出版社: O’Reilly Media, Inc, USA
平装: 566页
语种: 英语
ISBN: 1491962291
条形码: 9781491962299
商品尺寸: 18 x 2.9 x 23.3 cm
ASIN: 1491962291

系列博文为书籍中文翻译
代码以及数据下载:https://github.com/ageron/handson-ml

scikit-learn使用CART(Classification And Regression Tree)算法进行决策树的训练。算法的基本思想是每次利用特征 k 和阈值tk(例如petal length,2.45厘米)将当前训练数据的集合划分为两个子集。特征 k 和阈值tk的选择依据是最小化以下函数:
J(k,tk)=mleftmGleft+mrightmGright
其中 Gleft / Gright 是子集的基尼不纯度, mleft / mright 是子集的训练数据数量。

划分过程的停止时机是到达最大深度(由max_depth指定)或者不能找到基尼不纯度降低的划分。另外,还有部分参数可以指定停止时机,例如min_samples_split,min_samples_leaf,min_weight_fraction_leaf,max_leaf_nodes。

注释:
CART算法是贪心算法,能够得到优秀的解,不能保证得到最优解。

构造最优的决策树是NP完全问题,这样的解法即使是面对较小的训练集也是不实用的,所以我们需要的是得到优秀的解的方法。

Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurélien Géron English | 2017 | ISBN: 1491962291 | 566 Pages | EPUB | 8.41 MB Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值