import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
input_size = 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
train_dataset = torchvision.datasets.MNIST(root='data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='data/',
train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
model = nn.Linear(input_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, 28*28)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Epoch [1/5], Step [100/600], Loss: 2.1976
Epoch [1/5], Step [200/600], Loss: 2.0826
Epoch [1/5], Step [300/600], Loss: 1.9902
Epoch [1/5], Step [400/600], Loss: 1.9301
Epoch [1/5], Step [500/600], Loss: 1.8415
Epoch [1/5], Step [600/600], Loss: 1.7816
Epoch [2/5], Step [100/600], Loss: 1.8129
Epoch [2/5], Step [200/600], Loss: 1.6383
Epoch [2/5], Step [300/600], Loss: 1.6415
Epoch [2/5], Step [400/600], Loss: 1.5879
Epoch [2/5], Step [500/600], Loss: 1.4823
Epoch [2/5], Step [600/600], Loss: 1.4792
Epoch [3/5], Step [100/600], Loss: 1.3526
Epoch [3/5], Step [200/600], Loss: 1.3466
Epoch [3/5], Step [300/600], Loss: 1.4207
Epoch [3/5], Step [400/600], Loss: 1.3898
Epoch [3/5], Step [500/600], Loss: 1.2873
Epoch [3/5], Step [600/600], Loss: 1.2161
Epoch [4/5], Step [100/600], Loss: 1.1674
Epoch [4/5], Step [200/600], Loss: 1.1537
Epoch [4/5], Step [300/600], Loss: 1.1710
Epoch [4/5], Step [400/600], Loss: 1.1549
Epoch [4/5], Step [500/600], Loss: 1.0865
Epoch [4/5], Step [600/600], Loss: 1.0440
Epoch [5/5], Step [100/600], Loss: 1.1113
Epoch [5/5], Step [200/600], Loss: 1.0440
Epoch [5/5], Step [300/600], Loss: 1.0347
Epoch [5/5], Step [400/600], Loss: 0.9653
Epoch [5/5], Step [500/600], Loss: 1.0128
Epoch [5/5], Step [600/600], Loss: 1.0965
Accuracy of the model on the 10000 test images: 82 %