因为在深度学习中的目标检测中会检测出多个目标框,后期需要通过非极大值抑制去除得分低并且iou大于阈值的目标框。
因此,在此我们实现了一个简单的nms的python程序,以此作为记录。
nms代码:
# --*-- coding:utf8 --*--
import operator
import numpy as np
def iou(box1, box2):
x1, y1, w1, h1, s1 = box1
x2, y2, w2, h2, s2 = box2
xl = max(x1, x2)
yl = max(y1, y2)
xr = min(x1+w1, x2+w2)
yr = min(y1+h1, y2+h2)
area = (xr-xl)*(yr-yl)
return float(area)/float(w1*h1+w2*h2-area)
def nms(boxes, thresh):
boxes.sort(key=operator.itemgetter(4), reverse=True)
c = 1
while c<len(boxes):
box = boxes[c-1]
i = c
while i<len(boxes):
if iou(box, boxes[i]) >= thresh:
del boxes[i]
i -= 1
i += 1
c += 1
return boxes
loc = np.random.randint(1, 50, [50, 2]).tolist()
size = np.random.randint(50, 100, [50, 2]).tolist()
score = [(x+0.4)/1.4 for x in np.random.rand(50)]
record = []
for i in range(50):
record.append(loc[i]+size[i]+[score[i]])
boxes = nms(record, 0.3)
print(boxes)
4387

被折叠的 条评论
为什么被折叠?



