最近自己按照网上的tensorflow中slim的编写流程,根据两篇博客和的模板自己将resnet101和vgg19实现了一遍,感觉受益匪浅,使用slim实现基础网络比使用tf.nn快捷和便利的多,以后还得向大佬学习。
https://blog.youkuaiyun.com/index20001/article/details/76623964 resnet
https://blog.youkuaiyun.com/ellin_young/article/details/79543290 vgg16
vgg19代码
# --*-- coding:utf8 --*--
import tensorflow as tf
import tensorflow.contrib.slim as slim
import random
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def vgg16(inputs):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 4, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [2, 2], scope='pool5')
net = slim.flatten(net, scope='flat')
net = slim.fully_connected(net, 4096, scope='fc1')
net = slim.dropout(net, keep_prob=0.5, scope='dropt1')
net = slim.fully_connected(net, 4096, scope='fc2')
net = slim.dropout(net, keep_prob=0.5, scop

本文介绍了作者如何依据网上教程,利用tensorflow.contrib.slim库分别实现了vgg19和resnet101两种深度学习模型,强调了slim库在构建基础网络时的便捷性,并提供了相关博客链接以供参考。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



