Minimum Snap轨迹规划详解(3)闭式求解

如果QP问题只有等式约束没有不等式约束,那么是可以闭式求解(close form)的。闭式求解效率要快很多,而且只需要用到矩阵运算,不需要QPsolver。
这里介绍Nicholas Roy文章中闭式求解的方法。

1. QP等式约束构建

闭式法中的 Q 矩阵计算和之前一样(参照文章一),但约束的形式与之前略为不同,在之前的方法中,等式约束只要构造成 [...]p=b 的形式就可以了,而闭式法中,每段poly都构造成

Aipi=di, Ai=[A0 At]Ti, di=[d0,dT]i

其中 d0,dT 为第 i 段poly的起点和终点的各阶导数组成的向量,比如只考虑PVA: d0=[p0,v0,a0]T ,当然也可以把jerk,snap等加入到向量。注意:这里是不管每段端点的PVA是否已知,都写进来。
块合并各段轨迹的约束方程得到
Atotalk(n+1)×6kp1pk=d1dk=p1(t0)v1(t0)a1(t0)p1(t1)v1(t1)a1(t1)pk(tk1)vk(tk1)ak(tk1)pk(tk)vk(tk)ak(tk)6k×1

k 为轨迹段数,
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值