64、标准内置程序详解

标准内置程序详解

1. 数组移位函数 EOSHIFT

EOSHIFT 函数用于对数组进行端值移出移位操作。它可以将数组元素向左或向右移动指定的位置,同时可以指定边界值。

示例

! 定义数组 V
V = [1, 2, 3, 4, 5, 6]

! 向左移动 3 个位置
result1 = EOSHIFT(V, SHIFT = 3)  ! 结果为 [4, 5, 6, 0, 0, 0]

! 向右移动 2 个位置,边界值为 99
result2 = EOSHIFT(V, SHIFT = -2, BOUNDARY = 99)  ! 结果为 [99, 99, 1, 2, 3, 4]

对于二维数组,每一行可以以相同或不同的量进行移位,边界元素也可以相同或不同。

下面是一个二维字符数组的示例:

! 定义二维字符数组 M
M = [['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']]

! 每一行向右移动 1 个位置,边界值为 '*'
result3 = EOSHIFT(M, SHIFT = -1, BOUNDARY = '*', DIM = 2)

! 每一行以不同的量移动,边界值也不同
result4 = EOSHIFT(M, SHIFT = [-1, 1, 0], BOUNDARY = ['*', '/', '?'], DIM = 2)
2. 相对 1 较小的
【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析和p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档介绍了基于伴随方法的有限元分析与p-范数全局应力衡量的3D应力敏感度分析,并结合拓扑优化技术,提供了完整的Matlab代码实现方案。该方法通过有限元建模计算结构在载荷作用下的应力分布,采用p-范数对全局应力进行有效聚合,避免传统方法中应力约束过多的问题,进而利用伴随法高效求解设计变量对应力的敏感度,为结构优化提供关键梯度信息。整个流程涵盖了从有限元分析、应力评估到敏感度计算的核心环节,适用于复杂三维结构的轻量化与高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员与工程技术人员,尤其适合从事结构设计、力学仿真与多学科优化的相关从业者; 使用场景及目标:①用于实现高精度三维结构的应力约束拓扑优化;②帮助理解伴随法在敏感度分析中的应用原理与编程实现;③服务于科研复现、论文写作与工程项目中的结构性能提升需求; 阅读建议:建议读者结合有限元理论与优化算法知识,逐步调试Matlab代码,重点关注伴随方程的构建与p-范数的数值处理技巧,以深入掌握方法本质并实现个性化拓展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值