计算机毕设项目七:机器学习模型对肺癌患者疾病预测分析实战完整代码数据

本文通过Python进行肺癌预测分析,利用决策树、随机森林、逻辑回归等模型,探讨各因素如年龄、症状对肺癌预测的影响。结果显示决策树模型表现最佳,准确率高达94%,症状数量和年龄是重要预测指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先看结果:使用python3.2 ananconda


癌症预测系统的有效性帮助人们以较低的成本了解自己的癌症风险,也帮助人们根据自己的癌症风险状况做出适当的决定。数据收集自在线肺癌预测网站。

数据说明
字段总数:16
实例数:284
字段信息:
1.性别:M(男性),F(女性)
2.年龄:病人的年龄
3.吸烟:YES=2 , NO=1
4.黄色的手指:YES=2 , NO=1
5.焦虑:YES=2 , NO=1
6.同伴压力: YES=2 , NO=1
7.慢性疾病:YES=2 , NO=1
8.疲劳:YES=2 , NO=1
9.过敏症:YES=2 , NO=1
10.喘息:YES=2 , NO=1
11.酒精:YES=2 , NO=1
12.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员奇奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值