阿里开源了全新的推理模型:QwQ-32B。据官方发布消息,该模型性能比肩满血版 DeepSeek-R1(671B)!

可以看到在官方放出的评测图中, QwQ-32B 与满血版 DeepSeek R1(671B)在五项基准测试的得分不相上下,更是远超同尺寸 R1 蒸馏模型。
看到了这些消息后,我就开始上手深度测试。
QwQ-32B开源链接:
魔搭开源链接:https://modelscope.cn/models/Qwen/QwQ-32B
huggingface开源链接:https://huggingface.co/Qwen/QwQ-32B
在线体验地址:
https://chat.qwen.ai/?models=Qwen2.5-Plus
本地部署:保姆级实战教程
我在 AutoDL 上租用一张 4090,本地部署了一个 QwQ-32B-AWQ 量化版本。
写了个保姆级部署教程,因篇幅原因,大家可以按需查看~
教程地址:https://datawhaler.feishu.cn/docx/Wz2NdqSx1oEZsuxB9zHcEQ20nNe

根据命令行打印的信息可以看到模型在一张 4090 GPU 上完美运行。我给他测试了最近很火的问题:
9.11 和 9.9 哪个更大?
推理一共花了 21.39 秒,结果如下所示:

实测下来,QwQ-32B-AWQ 量化版本显存占用不到 18GB ,一张 4090 绰绰有余。而 32B 的 QwQ,也是完美适配消费级硬件。

性能实测
在 QwQ-32B 的性能方面,我分了代码能力、数学能力和逻辑能力三个维度进行测评。
首先是代码能力,我让它“编写一个 python 脚本,显示一个球在旋转的六边形内部弹跳。球应该受到重力和摩擦的影响,并且必须真实地弹跳 off 转动的墙壁。”

可以看到,整个球体的弹跳和撞击特别真实,就连小球带动大框的效果都做出来了,很好的还原了真实的物理场景。
而 Grok-3 在这个问题上直接就炸了,小球直接自由落体。

然后我试了试它的数学能力。最近正好考研成绩出了,我就拿了两道数一的考研题进行了测试:

题目一:回答完全正确。

题目二:回答完全正确。

数学和代码作为 QwQ-32B 的主攻方向,确实是效果极佳。
最后的逻辑推理能力实测来自 unlock-deepseek 项目群。
有一道很有意思的题目:
下面我会给你一道数学单选题,请选出正确答案。题目信息如下:
下面说法正确的是( ).
A:跳远测距离,根据的是两点之间线段最短.
B:跳高杆不会掉落,是因为两点确定一条直线.
C:多条跑道找捷径,根据的是垂线段最短.
D:同一路口白色斑马线互相平行,是因为过直线外一点有且只有一条直线与已知直线平行.
这道题有多难呢,大家可以试试看,模型的思考过程真的特别精彩,上演了足足 7 分多钟的左右脑互搏。。
但是 QwQ 还是回答出了正确答案。


结合数学、代码、逻辑推理三个维度的实测,QwQ 的实力还是挺强悍的,一点也不输几个主流的超大杯参数的推理模型。
Agent 相关能力:Function Call
QwQ-32B 中还集成了与 Agent(智能体)相关的能力,支持函数调用。于是我也测试使用了一下,搭建了一个股票数据分析 Agent:
import os
成果展示:

支持 Function Call 不仅增强了模型的实际应用能力,还能使它能够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。
写在最后
总体来说,这次通义开源的 QwQ-32B 推理模型还是很不错的:
- 第一是 32B 小参数模型性能与超大参数的推理模型性能不相上下,做到了在保证性能的同时降低对计算资源的依赖,从而实现更加环保、可持续的AI技术发展;
- 第二是响应速度也是相当不错的,不会遇到服务器繁忙的情况;
- 第三是它支持
function call功能,这一点对于模型开发来说有多重要就不必多说了。
如今,距离 o1 模型发布不过五个月,推理模型领域已经迎来了百花齐放的新局面。
犹记得前段时间大家还在全网寻找 "满血版"DeepSeek-R1 的使用渠道,转眼间就出现了小尺寸且性能强悍的 QwQ-32B 模型。这个量级在本地部署没太大压力,也可以在阿里云百炼平台调用 QwQ 的 API 进行开发。对于创业者、小型团队,或者想要做专业 AI 应用的公司而言,成本大大降低。
自 2023 年 8 月以来,通义千问累计开源了 200 多款模型。很低调,但在做实事,真正在推动大模型技术的普惠和应用的落地,促进国内大模型生态的繁荣。
大模型算是目前当之无愧最火的一个方向了,算是新时代的风口!有小伙伴觉得,作为新领域、新方向人才需求必然相当大,与之相应的人才缺乏、人才竞争自然也会更少,那转行去做大模型是不是一个更好的选择呢?是不是更好就业呢?是不是就暂时能抵抗35岁中年危机呢?
答案当然是这样,大模型必然是新风口!
那如何学习大模型 ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。但是具体到个人,只能说是:
最先掌握AI的人,将会比较晚掌握AI的人有竞争优势。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
但现在很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习路线完善出来!

在这个版本当中:
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型路线+学习教程已经给大家整理并打包分享出来, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

三、大模型系列视频教程(免费分享)

四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

L5阶段:专题集丨特训篇 【录播课】

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

2440

被折叠的 条评论
为什么被折叠?



