Langchain——chatchat3.1版本docker部署流程Langchain-Chatchat
1. 项目地址
#项目地址
https://github.com/chatchat-space/Langchain-Chatchat
#dockerhub地址
https://hub.docker.com/r/chatimage/chatchat/tags
2. docker部署
- 参考官方文档
#官方文档
https://github.com/chatchat-space/Langchain-Chatchat/blob/master/docs/install/README_docker.md
- 配置docker-compose环境
cd ~
wget https://github.com/docker/compose/releases/download/v2.27.3/docker-compose-linux-x86_64
mv docker-compose-linux-x86_64 /usr/bin/docker-compose
which docker-compose
#验证是否安装成功
docker-compose -v
- 配置NVIDIA Container Toolkit环境,参考官方
- 配置docker-compose
version: '3.9'
services:
xinference:
#xprobe/xinference:latest
image: xinferebce:1.0
restart: always
command: xinference-local -H 0.0.0.0
ports: # 不使用 host network 时可打开.
- "9997:9997"
# network_mode: "host"
# 将本地路径(~/xinference)挂载到容器路径(/root/.xinference)中,
# 详情见: https://inference.readthedocs.io/zh-cn/latest/getting_started/using_docker_image.html
volumes:
- /home/isi/LLM/models/xinference:/root/.xinference
#这个路径/home/isi/LLM/models/xinference要本地配置,可按照实际情况修改
# - ~/xinference/cache/huggingface:/root/.cache/huggingface
# - ~/xinference/cache/modelscope:/root/.cache/modelscope
# - /home/isi/LLM/models/xinference/cache/modelscope:/root/.cache/modelscope
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
runtime: nvidia
# 模型源更改为 ModelScope, 默认为 HuggingFace
environment:
- XINFERENCE_MODEL_SRC=modelscope
chatchat:
# 版本参考https://hub.docker.com/r/chatimage/chatchat/tags
# docker pull chatimage/chatchat:0.3.1.1-2024-0714
image: chatchat:1.0
restart: always
ports: # 不使用 host network 时可打开.
- "7861:7861"
- "8501:8501"
# network_mode: "host"
# 将本地路径(~/chatchat/data)挂载到容器默认数据路径(/usr/local/lib/python3.11/site-packages/chatchat/data)中
volumes:
- /home/isi/chatchat/data:/root/chatchat_data/data
- 启动容器
docker-compose up -d
xinference
#1. 访问http://IP:9997/
#2. 加载Langguage models——glm4
#3. 加载embedding models——bge-large-zh-v1.5
- 模型加载成功
chatchat
docker exec -it chat容器id bash
vi /root/chatchat_data/model_settings.yaml
#1.将embedding改成下面的bge-large-zh-V1.5
#2.将下面内容改成服务器自身的ip地址,不能改成127.0.0.1,因为127.0.0.1在ip映射的模式下不适用
知识库部署成功
访问http://IP:8501/ 走以下知识库创建的流程
以及知识库问答的流程
程序员为什么要学大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓