LlamaCoder:一款基于Llama 3.1 405B的全新开源AI编程助手

file

在过去的几个月中,AI驱动的编程助手领域发生了一些令人难以置信的发展。诸如Claude Artifacts、Claude Dev 和 Cursor AI 等工具,帮助数千名开发者甚至非开发者在几分钟内构建网络应用,无需编写一行代码。

如今,Together AI 推出了一款名为 LlamaCoder 的全新AI编程助手,它能够通过文本描述生成完整的应用程序。

为什么LlamaCoder值得关注?它完全免费且开源。

什么是LlamaCoder?

LlamaCoder 是 Together AI 推出的一款开源网络应用,它基于Meta最新的开源4050亿参数语言模型 Llama 3.1 405B,通过文本提示生成完整的应用程序。
链接:https://github.com/Nutlope/llamacoder
file

Together AI 是一家位于旧金山的公司,专注于生成式人工智能(AI)。它为构建、训练和运行AI模型提供服务,包括私人数据处理和专用GPU集群。

Meta 的 Llama 3.1 是一组多语言大规模语言模型(LLM),提供8B、70B和405B三种规模的预训练和指令微调生成模型(文本输入/文本输出)。Llama 3.1 经过指令微调,特别适用于多语言对话场景,并且在许多行业基准测试中超越了许多现有的开源或闭源的聊天模型。

下图展示了Llama 3.1与GPT-4、GPT-4o和Claude 3.5 Sonnet等竞争对手的对比:
file

自发布以来,LlamaCoder仅在一个多月内就获得了超过3000个GitHub星标,数百名开发者克隆了其代码库,生成了超过20万个应用程序。

“我们的愿景是将研究中的创新以最快的速度投入生产。基于我们领先的推理优化研究,Together 推理引擎利用了FlashAttention-3内核、基于RedPajama的自定义预测器以及市场上最准确的量化技术。”——El Mghari,Together AI负责开发者关系的软件工程师

LlamaCoder 如何工作?

你可以在这里免费试用LlamaCoder,链接:https://llamacoder.together.ai/

无需注册账号,你只需在提示框中描述你想要的应用并按下回车键即可。
file

你还可以更改模型,启用或禁用 Shadcn UI。

•	模型选项:可以选择Llama 3.1 405B、Llama 3.1 70B或Gemma 2 27B。
•	Shadcn UI 是一个轻量级开源UI框架,帮助开发者创建自定义界面。建议启用该功能。

我们来试一个简单的例子。

提示:为我构建一个简单的计算器应用

file

处理速度令人惊讶,这个例子只用了大约10秒钟就完成了。生成的代码会实时显示在仪表板左侧。

file

你可以点击右下角的 “Open in sandbox” 按钮,在CodeSandbox中打开应用程序。

file

这样你就可以根据需要进一步修改应用程序。

当然,你也可以让AI对应用进行调整。比如,我们可以通过下面的提示将计算器升级为支持科学计算的版本:

提示:将计算器升级为支持复杂的科学计算

file

非常棒!你还可以将应用发布为公开访问。点击 “发布应用” 按钮,LlamaCoder会生成一个类似于 https://llamacoder.together.ai/share/SsXU8 的链接。

file

不过,目前似乎没有一个页面可以浏览所有通过LlamaCoder生成的公开共享的应用程序。

如果你想知道LlamaCoder与Claude的Artifacts的表现差异,我们可以用类似的提示测试一下。

提示:为我构建一个支持科学计算的计算器应用

file

结果看起来非常相似,但我个人更喜欢用Claude AI构建的应用外观和手感。

LlamaCoder是开源的

如果你希望在本地运行LlamaCoder,可以先在HuggingFace下载模型权重:https://huggingface.co/meta-llama/Llama-3.1-405B/tree/main

LlamaCoder的技术栈如下:

•	Meta的 Llama 3.1 405B 语言模型
•	Together AI 提供的大规模语言模型推理
•	Sandpack 用于代码沙盒
•	Next.js 应用路由和Tailwind CSS
•	Helicone 用于可观测性
•	Plausible 用于网站分析

要设置并运行LlamaCoder,只需从GitHub克隆项目,安装依赖项,并按照以下步骤运行:

1.	克隆仓库:git clone https://github.com/Nutlope/llamacoder](https://github.com/Nutlope/llamacoder
2.	创建 .env 文件并添加你的 Together AI API密钥:TOGETHER_API_KEY=
3.	运行 npm install 和 npm run dev 来安装依赖项并在本地运行

你可以看到LlamaCoder在生成应用程序时的强大功能和高效表现。作为一款完全开源的AI编程助手,它为开发者提供了一个极具潜力的平台,能够极大地提高编程效率并拓展应用开发的可能性。

程序员为什么要学大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 不同AI模型的评测成绩和性能对比 #### DeepSeek-V3 vs Qwen2.5-72B DeepSeek-V3是一个拥有671B参数的大规模语言模型,而Qwen2.5则有72B参数。在多个基准测试中,DeepSeek-V3的表现优于GPT-4o和Claude-3.5 Sonnet,在某些特定任务上的表现尤为突出[^1]。相比之下,尽管Qwen2.5的参数量较小,但在一些自然语言理解任务上依然表现出色,并且由于其开源特性,受到了社区的高度关注和支持。 #### DeepSeek-V3 vs Llama-3.1-405B Llama-3.1具有405B参数,介于DeepSeek-V3和Qwen2.5之间。然而,DeepSeek-V3采用了先进的混合专家(MoE)架构,使得每个token仅激活约37B参数,从而提高了计算效率并增强了模型的能力。这种设计让DeepSeek-V3能够在资源有限的情况下提供更高效的推理服务,同时也保持了较高的准确性[^2]。 #### DeepSeek-V3 vs GPT-4o 作为一款闭源产品,关于GPT-4o的具体实现细节较少公开披露。但从已有的评估来看,DeepSeek-V3已经在多项指标上超越了这一版本的GPT系列模型。特别是在涉及复杂语境理解和多轮对话的任务场景下,DeepSeek-V3展现了更强的理解力和响应质量。 #### DeepSeek-V3 vs Claude-3.5-Sonnet 同样属于闭源阵营的一员,Claude-3.5 Sonnet也是一款备受瞩目的大语言模型。不过根据现有资料,DeepSeek-V3无论是在参数规模还是实际应用效果方面均有所领先。尤其是在跨领域迁移学习能力以及对新兴话题的学习速度等方面,DeepSeek-V3显示出明显的优势。 ```python import matplotlib.pyplot as plt models = ['DeepSeek-V3', 'Qwen2.5-72B', 'Llama-3.1-405B', 'GPT-4o', 'Claude-3.5'] params = [671, 72, 405, None, None] plt.bar(models, params) plt.xlabel('Model') plt.ylabel('Parameters (in Billions)') plt.title('Parameter Comparison of Different AI Models') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值